1 Mikroökonomie I (Märkte und Unternehmen) I. Einführung: Märkte (Varian, Ch. 1, Ch. 15, Ch. 16) Was ist Mikroökonomie? Nachfrage, Angebot und Marktgleichgewicht. II. Die Unternehmung im Wettbewerb (Varian, Ch. 17-22) Produktionstechnologie Gewinnmaximierung Faktornachfrage Kostenminimierung Kostenkurven Angebotskurven III. Marktmacht (Varian, Ch. 23, Ch. 25, Ch. 26) Monopol Oligopol Die Vorlesung orientiert sich an Varian, H.R., Intermediate Microeconomics: A Modern Approach, New York-London: Norton. Die in Klammern angeführten Kapitelverweise beziehen sich auf die 3. Auflage, 1993. (Deutsche Übersetzung: Varian, H.R., Grundzüge der Mikroökonomik, München-Wien: Oldenbourg) 2 0. Was ist Mikroökonomie? Mikroökonomie analysiert − Verhalten von Wirtschaftsobjekten, − Interaktion von Wirtschaftssubjekten Wirtschaftssubjekte: − Haushalte (Konsumenten) − Firmen (Unternehmen, Produzenten) − Ausweitung auf andere Bereiche: Politiker, Beamte, Medien etc. (Ökonomische Theorie der Politik, der Bürokratie etc.) Verhalten: − Rationalverhalten (Homo oeconomicus setzt Mittel optimal zur Zielerreichung ein → Entscheidungstheorie) − alternative Ansätze: z.B. experimentelle Ökonomie Interaktion − von Angebot und Nachfrage auf einzelnen Märkten (Partialanalyse) − aller Wirtschaftssubjekte auf allen Märkten (Allgemeines Gleichgewicht) 3 1. Nachfrage Welche Menge (= wieviele Einheiten) q eines Gutes wird gekauft (nachgefragt), wenn der Preis für eine Einheit des Gutes p ist? Dieser Zusammenhang wird durch die Nachfragekurve q = D (p) (bzw. kurz q (p)) beschrieben. Normalfall: D ′( p ) < 0 (statt D ′( p ) verwenden wir auch dq oder q ′( p ) ). dp 4 Inverse Nachfragekurve (= Kurve der marginalen Zahlungsbereitschft bzw. „Grenznutzenkurve“): Welchen Preis p ist ein Konsument (sind Konsumenten) für die 1., 2., ..., q-te Einheit des Gutes zu zahlen bereit? p = P (q) mit (kurz p (q)) dP ( = p ′( q ) ) < 0. dq 5 Brutto-Konsumentenrente (Gross-consumer’s surplus) Die Summe der Zahlungsbereitschaften für q Einheiten eines Gutes wird als Maß für die Wohlfahrt (den „Nutzen“) verwendet, welche die Nachfrage dieser Einheiten den Konsumenten stiftet. Dieses Maß wird Brutto-Konsumentenrente (Grossconsumer’s surplus) genannt. Es entspricht der Fläche unter der Nachfragekurve. 6 (Netto-) Konsumentenrente ([Net-]Consumer’s surplus) Brutto-Konsumentenrente (Summe der Zahlungsbereitschaften) KR b ( q ) - Ausgaben für Konsum q ( = p ⋅ q ) _______________________________________________________________ = (Netto-) Konsumentenrente („Zahlungsbereitschaftsüberschuß“) KR( q ) = KR b ( q ) − p ⋅ q q q s =1 0 = ∑ p( s ) − p( q ) = ∫ [ P( s ) − p( q )]ds 7 Preiselastizität der Nachfrage Wie sensibel reagiert die Nachfrage nach einem Gut auf Preisänderungen? Elastizität = Relative (prozentuelle) Änderung der abhängigen Variable Relative (prozentuelle) Änderung der unabhängigen Varible ε = dq q dp dq p = ⋅ p dp q (analog sind andere Elastizitäten definiert: Kreuzpreis-, Einkommenselastizität etc. ). Achtung: ε hängt davon ab, welcher Punkt auf der Kurve betrachtet wird (Punktelastizität) 8 Beispiel 1: Lineare Nachfragekurve q = a - bp Beispiel 2: Iso-elastische Nachfragekurve q = Ap −γ mit γ > 0. 9 Individuelle und aggregierte Nachfragekurve horizontale Addition 10 2. Angebot Welche Menge q eines Gutes wird zum Verkauf angeboten, wenn der Preis p ist? Dieser Zusammenhang zwischen Menge und Preis wird durch die Angebotskurve beschrieben: q = S ( p) mit S '( p ) (bzw. dq / dp ) > 0. 11 Produzentenrente (Producers’s surplus) Die Angebotskurve kann auch in der umgekehrten Richtung gelesen werden (inverse Angebotskurve PS ( q ) ): Damit die q-te Einheit auf den Markt kommt, muß mindestens der Preis p = PS ( q ) geboten werden. PS ( q ) entspricht also dem „Wert der q-ten Einheit“ für den Anbieter. (Wir werden später zeigen, daß dieser „Wert“ den Grenzkosten der q-ten Einheit entspricht). Erlös aus dem Verkauf von q Einheiten ( = p ⋅ q ) - Summe des „Wertes der q Einheiten“ für den Anbieter = Produzentenrente (PR) 12 3. (Wettbewerbs)märkte Aufeinandertreffen von Angebot und Nachfrage. Im Wettbewerbsmarkt (man spricht auch von polypolitischem Markt oder vollkommenem Wettbewerb) sind Anbieter und Nachfrager Preisnehmer. [ ] Marktgleichgewicht E = ( q ∗ , p ∗ ) : Der Preis paßt sich so an, daß Angebot = Nachfrage, d.h. S ( p ∗ ) = D( p ∗ ). p ∗ ... Gleichgewichtspreis q ∗ ... Gleichgewichtsmenge 13 Ungleichgewichte (wenn p ≠ p ∗ ) − vorübergehend (bis Preis an p∗ angepaßt) − bei Verzerrung von Märkten durch Politik oder Marktunvollkommenheiten Angebotsüberschuß: S ( p' ) − D( p' ) > 0 wenn p' > p ∗ . Beispiele: − Politisch auferlegte Mindestpreisregelungen ( p ≥ pmin > p ∗ ) verhindern Absinken von p auf p ∗ . − Ökonomisch bedingte Preisrigiditäten verhindern Absinken des Preises. (Vgl. z.B. Arbeitsmarktdiskussion). 14 Nachfrageüberschuß: S ( p' ) − D( p' ) < 0 wenn p' < p ∗ . Beispiel: Höchstpreisregelungen ( p ≤ pmax < p ∗ ) verhindern Anstieg von p auf p ∗ . (Vgl. z.B. Wohnungsmarkt etc.) 15 Effizienz des Marktgleichgewichts Bei einem vollkommenen Markt* gilt: Sozialer Überschuß (SÜ) = Konsumentenrente (KR) + Produzentenrente (PR) ist im Marktgleichgewicht maximal. * Keine Marktmacht, keine unvollkommene Information, keine externen Effekte! 16 Der Deadweightloss als Maß für den Wohlfahrtsverlust infolge ineffizienter Marktergebnisse: Bei p'≠ p∗ gilt: SÜ ( p' ) < SÜ ( p ∗ ) Der Verlust des sozialen Überschusses, der durch das Abweichen von p ′ vom Gleichgewichtspreis p ∗ entsteht, entspricht der Fläche des Dreiecks AEB. Dieser Effizienzverlust wird oft auch deadweightloss (DWL) genannt. Achtung: Effizienz (SÜ) vs. Verteilung zwischen PR und KR! 17 Komparativ-statische Analyse Durch Änderung von − Nachfragebedingungen (z.B. steigende Einkommen führen zu Marktausweitung, Ersatzprodukte zu einem Rückgang der Nachfrage) − Angebotsbedingungen (z.B. steigende oder fallende Inputpreise, Steuern, Subventionen) ändert sich das Marktgleichgewicht. Vergleicht man Marktgleichgewichte, die sich aus verschiedenen exogenen Bedingungen ergeben, spricht man von komparativ-statischer Analyse. (Die dynamische Analyse der Anpassungsreaktionen auf exogenen Änderungen wird dabei vernachlässigt). 18 Beispiel: Kostensteigerungen Auswirkung hängt davon ab, wie elastisch Nachfrage und Angebot sind. 19 Beispiel: Auswirkungen einer spezifischen Mengensteuer mit Steuersatz τ . Steueraufkommen: τ qτ = A + B Rückgang der Konsumentrente: A + C Rückgang der Produzentenrente: B + D Deadweightloss (auch Excess burden der Steuer τ genannt): C + D