Inhaltsverzeichnis 1 Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Teil I Deskriptive Statistik 2 Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Grundbegriffe der deskriptiven Statistik . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Messbarkeitseigenschaften von Merkmalen . . . . . . . . . . . . . . . . . . . . . 2.3.1 Nominalskala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.2 Ordinalskala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.3 Kardinalskala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Skalentransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Häufigkeitsfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Klassierung von metrischen Merkmalswerten . . . . . . . . . . . . . . . . . . . 2.7 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 8 13 13 13 14 15 16 18 21 3 Datenerhebung und Erhebungsarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Datenerhebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Fragebogenerhebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Gestaltung von Befragungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Erhebungsarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.1 Zufallsstichproben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Nicht zufällige Stichproben . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Datenschutz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 23 24 24 25 27 28 30 32 4 Eindimensionale Datenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Qualitative Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2.1 Modus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 36 36 38 X Inhaltsverzeichnis 4.3 4.4 4.5 5 4.2.2 Informationsentropie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Komparative Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.1 Empirische Verteilungsfunktion . . . . . . . . . . . . . . . . . . . . . . . . 4.3.2 Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.3 Boxplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3.4 Summenhäufigkeitsentropie . . . . . . . . . . . . . . . . . . . . . . . . . . . Quantitative Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.1 Stamm-Blatt Diagramm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.2 Histogramm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.3 Dichtespur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.4 Arithmetisches Mittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.5 Harmonisches Mittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.6 Geometrisches Mittel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.7 Spannweite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.8 Median der absoluten Abweichung vom Median . . . . . . . . . . 4.4.9 Varianz und Standardabweichung . . . . . . . . . . . . . . . . . . . . . . . 4.4.10 Variationskoeffizient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4.11 Relative Konzentrationsmessung . . . . . . . . . . . . . . . . . . . . . . . 4.4.12 Absolute Konzentrationsmessung . . . . . . . . . . . . . . . . . . . . . . . Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 45 45 47 49 51 54 54 57 59 65 67 70 72 73 74 80 83 92 98 Zweidimensionale Datenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.1 Zweidimensionale Daten und ihre Darstellung . . . . . . . . . . . . . . . . . . 101 5.2 Randverteilungen und bedingte Verteilungen . . . . . . . . . . . . . . . . . . . . 105 5.2.1 Randverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2.2 Bedingte Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Zusammenhangsmaße qualitativer Merkmale . . . . . . . . . . . . . . . . . . . 113 5.3.1 Quadratische Kontingenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3.2 Informationsentropie bei zweidimensionalen Häufigkeitsverteilungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.3 Transinformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.3.4 Vergleich von C und T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.4 Zusammenhangsmaße komparativer Merkmale . . . . . . . . . . . . . . . . . . 121 5.4.1 Kovarianz und Korrelationskoeffizient . . . . . . . . . . . . . . . . . . . 121 5.4.2 Rangfolge und Rangzahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.4.3 Rangkorrelationskoeffizient . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.5 Zusammenhangsmaße quantitativer Merkmale . . . . . . . . . . . . . . . . . . 126 5.5.1 Kovarianz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.5.2 Korrelationskoeffizient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.6 Interpretation von Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.7 Simpson Paradoxon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.8 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Inhaltsverzeichnis XI 6 Lineare Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Lineare Regressionsfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.3 Methode der Kleinsten Quadrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.1 Normalgleichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.3.2 Kleinst-Quadrate Schätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.3.3 Standardisierte Regressionskoeffizienten . . . . . . . . . . . . . . . . . 146 6.4 Bestimmtheitsmaß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.5 Spezielle Regressionsfunktionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.1 Trendfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.2 Linearisierung von Funktionen . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.5.3 Datentransformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.6 Lineares Modell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.7 Prognose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.8 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7 Verhältnis- und Indexzahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 7.2 Gliederungs-, Beziehungs- und Messzahlen . . . . . . . . . . . . . . . . . . . . . 163 7.3 Umbasierung und Verkettung von Messzahlen . . . . . . . . . . . . . . . . . . 166 7.3.1 Umbasierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.3.2 Verkettung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.4 Indexzahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.4.1 Preisindex nach Laspeyres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.4.2 Basiseffekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 7.4.3 Preisindex nach Paasche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 7.4.4 Mengenindizes nach Laspeyres und Paasche . . . . . . . . . . . . . 174 7.4.5 Umsatzindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.4.6 Deflationierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.4.7 Verkettung von Indexzahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.4.8 Anforderungen an einen idealen Index . . . . . . . . . . . . . . . . . . 179 7.4.9 Preisindex nach Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.4.10 Kettenindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.5 Aktienindex DAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 7.6 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Teil II Schließende Statistik 8 Kombinatorik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.1 Grundbegriffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.2 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2.1 Permutation ohne Wiederholung . . . . . . . . . . . . . . . . . . . . . . . 189 8.2.2 Permutation mit Wiederholung . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.3 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 XII Inhaltsverzeichnis 8.4 8.5 9 8.3.1 Variation ohne Wiederholung . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3.2 Variation mit Wiederholung . . . . . . . . . . . . . . . . . . . . . . . . . . . Kombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.1 Kombination ohne Wiederholung . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 Kombination mit Wiederholung . . . . . . . . . . . . . . . . . . . . . . . . Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 192 192 192 193 195 Grundzüge der Wahrscheinlichkeitsrechnung . . . . . . . . . . . . . . . . . . . . . . 197 9.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.2 Zufallsexperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 9.3 Ereignisoperationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 9.4 Wahrscheinlichkeitsbegriffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 9.4.1 Laplacescher Wahrscheinlichkeitsbegriff . . . . . . . . . . . . . . . . 205 9.4.2 Von Misesscher Wahrscheinlichkeitsbegriff . . . . . . . . . . . . . . 206 9.4.3 Subjektiver Wahrscheinlichkeitsbegriff . . . . . . . . . . . . . . . . . . 206 9.4.4 Axiomatische Definition der Wahrscheinlichkeit . . . . . . . . . . 207 9.4.5 Rechenregeln . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9.5 Bedingte Wahrscheinlichkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.6 Satz von Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.7 Unabhängige Zufallsereignisse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 9.8 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 10 Zufallsvariablen und Wahrscheinlichkeitsfunktion . . . . . . . . . . . . . . . . . 227 10.1 Zufallsvariablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 10.2 Wahrscheinlichkeitsfunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 10.2.1 Wahrscheinlichkeitsfunktion einer diskreten Zufallsvariablen 230 10.2.2 Wahrscheinlichkeitsfunktion einer stetigen Zufallsvariablen 232 10.3 Verteilungen von transformierten Zufallsvariablen . . . . . . . . . . . . . . . 238 10.4 Erwartungswert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.5 Modus und Quantil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.6 Varianz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10.7 Erwartungswert und Varianz linear transformierter Zufallsvariablen 246 10.7.1 Erwartungswert linear transformierter Zufallsvariablen . . . . . 246 10.7.2 Varianz linear transformierter Zufallsvariablen . . . . . . . . . . . . 247 10.8 Momente und momenterzeugende Funktion . . . . . . . . . . . . . . . . . . . . 249 10.8.1 Momente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 10.8.2 Momenterzeugende Funktion . . . . . . . . . . . . . . . . . . . . . . . . . . 250 10.9 Ungleichung von Chebyschew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 10.10 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11 Gemeinsame Verteilung von Zufallsvariablen . . . . . . . . . . . . . . . . . . . . . . 257 11.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 11.2 Bedingte Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 11.3 Bedingter Erwartungswert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 11.4 Kovarianz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Inhaltsverzeichnis 11.5 XIII Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 12 Normalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 12.2 Standardnormalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 12.3 Lognormalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 12.4 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 13 Bernoulli-verwandte Zufallsvariablen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 13.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 13.2 Bernoulliverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 13.3 Binomialverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 13.4 Hypergeometrische Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 13.5 Geometrische Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 13.6 Negative Binominalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 13.7 Negative hypergeometrische Verteilung . . . . . . . . . . . . . . . . . . . . . . . . 303 13.8 Poissonverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 13.9 Exponentialverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 13.10 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 14 Stichproben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 14.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 14.2 Identisch verteilte unabhängige Stichproben . . . . . . . . . . . . . . . . . . . . 316 14.3 Schwaches Gesetz der großen Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . 317 14.4 Starkes Gesetz der großen Zahlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 14.5 Hauptsatz der Statistik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 14.6 Zentraler Grenzwertsatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 14.6.1 Approximation der Binomialverteilung durch die Normalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 14.6.2 Approximation der hypergeometrischen Verteilung durch die Normalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 14.6.3 Approximation der Poissonverteilung durch die Normalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 14.7 Stichprobenverteilungen aus normalverteilten Grundgesamtheiten . . 330 14.7.1 χ2 -Quadrat Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 14.7.2 t-Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 14.7.3 F -Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 14.8 Hauptsatz der Stichprobentheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 14.9 Stichproben aus bernoulli-, exponential- und poissonverteilten Grundgesamtheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 14.9.1 Stichproben aus bernoulli- und binomialverteilten Grundgesamtheiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 14.9.2 Stichproben aus poissonverteilten Grundgesamtheiten . . . . . 339 14.9.3 Stichproben aus exponentialverteilten Grundgesamtheiten . . 339 14.10 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 XIV Inhaltsverzeichnis 15 Parameterschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 15.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 15.2 Punktschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 15.2.1 Methode der Momente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 15.2.2 Maximum-Likelihood Schätzung . . . . . . . . . . . . . . . . . . . . . . . 346 15.2.3 Methode der Kleinsten Quadrate . . . . . . . . . . . . . . . . . . . . . . . 349 15.3 Intervallschätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 15.3.1 Konfidenzintervall für µX einer Normalverteilung bei 2 bekanntem σX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 15.3.2 Konfidenzintervall für µX einer Normalverteilung bei 2 unbekanntem σX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 15.3.3 Konfidenzintervall für Regressionskoeffizienten . . . . . . . . . . . 354 15.3.4 Konfidenzintervall für eine ex post Prognose . . . . . . . . . . . . . 357 15.3.5 Approximatives Konfidenzintervall für µX . . . . . . . . . . . . . . . 358 15.3.6 Approximatives Konfidenzintervall für den Anteilswert θ . . . 358 2 15.3.7 Konfidenzintervall für σX bei normalverteilter Grundgesamtheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358 15.4 Eigenschaften von Schätzstatistiken . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 15.4.1 Erwartungstreue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 15.4.2 Mittlerer quadratischer Fehler . . . . . . . . . . . . . . . . . . . . . . . . . . 363 15.4.3 Konsistenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 15.4.4 Effizienz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 15.5 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 16 Statistische Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 16.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 16.2 Klassische Testtheorie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 16.3 Parametertests bei normalverteilten Grundgesamtheiten . . . . . . . . . . 380 16.3.1 Gauss-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 16.3.2 t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 16.3.3 Parametertest im linearen Regressionsmodell . . . . . . . . . . . . . 384 16.4 Binomialtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 16.5 Testentscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 16.6 Gütefunktion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 16.7 Operationscharakteristik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403 16.8 Test auf Gleichheit von zwei Mittelwerten . . . . . . . . . . . . . . . . . . . . . . 409 16.8.1 Vergleich zweier unabhängiger Stichproben . . . . . . . . . . . . . . 410 16.8.2 Vergleich von zwei verbundenen Stichproben . . . . . . . . . . . . . 418 16.8.3 Unterschied zwischen verbundenen und unabhängigen Stichproben . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 16.9 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 Inhaltsverzeichnis XV 17 Statistische Tests für kategoriale Merkmale . . . . . . . . . . . . . . . . . . . . . . . 423 17.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 17.2 χ2 -Anpassungstest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423 17.3 χ2 -Homogenitätstest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 17.4 χ2 -Unabhängigkeitstest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 17.5 Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 Teil III Einführung in die multivariaten Verfahren 18 Überblick über verschiedene multivariate Verfahren . . . . . . . . . . . . . . . . 445 18.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 18.2 Asymmetrische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 18.2.1 Regressionsanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 18.2.2 Varianzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 18.2.3 Diskriminanzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447 18.3 Symmetrische Modelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 18.3.1 Kontingenzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 18.3.2 Faktorenanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 18.3.3 Clusteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 18.3.4 Multidimensionale Skalierung . . . . . . . . . . . . . . . . . . . . . . . . . 450 18.3.5 Conjoint Analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 19 Varianzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 19.1 Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 19.2 Einfaktorielle Varianzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 19.3 Zweifaktorielle Varianzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 19.4 Andere Versuchspläne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474 19.5 Multivariate Varianzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 20 Diskriminanzanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 20.1 Problemstellung der Diskriminanzanalyse . . . . . . . . . . . . . . . . . . . . . . 481 20.2 Klassische Diskriminanzanalyse nach Fisher . . . . . . . . . . . . . . . . . . . . 483 20.2.1 Klassifikationsregel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 20.2.2 Spezialfall zwei Gruppen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487 20.2.3 Weitere Klassifikationsregeln . . . . . . . . . . . . . . . . . . . . . . . . . . 488 20.3 Überprüfung der Diskriminanzfunktion . . . . . . . . . . . . . . . . . . . . . . . . 489 20.4 Überprüfung der Merkmalsvariablen . . . . . . . . . . . . . . . . . . . . . . . . . . 490 20.5 Anwendungsbeispiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 21 Grundlagen der hierarchischen Clusteranalyse . . . . . . . . . . . . . . . . . . . . 503 21.1 Problemstellung der Clusteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . 504 21.2 Ähnlichkeits- und Distanzmaße . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505 21.2.1 Nominalskalierte binäre Merkmale . . . . . . . . . . . . . . . . . . . . . 506 21.2.2 Nominalskalierte mehrstufige Merkmale . . . . . . . . . . . . . . . . . 510 XVI Inhaltsverzeichnis 21.3 21.4 21.5 21.6 21.7 21.8 21.2.3 Ordinalskalierte Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.4 Quantitative Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2.5 Merkmale mit unterschiedlichem Skalenniveau . . . . . . . . . . . Hierarchische Clusteranalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Agglomerative Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.1 Nearest Neighbour Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.2 Furthest Neighbour Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.3 Centroid Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.4 Median Cluster Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.5 Average Linkage Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.6 Ward’s Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.4.7 Entropieanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fusionseigenschaften agglomerativer Verfahren . . . . . . . . . . . . . . . . . Divisive Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.6.1 Ein polythetisches Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.6.2 Ein monothetisches Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . Probleme von Clusterverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.7.1 Definition von Clustern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.7.2 Entscheidung über die Anzahl der Klassen . . . . . . . . . . . . . . . 21.7.3 Beurteilung der Klassen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.7.4 Anwendungsempfehlungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anmerkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512 513 518 519 519 520 523 525 527 528 533 537 539 540 541 542 545 545 546 547 549 551 Lösungen zu den Übungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 A.1 Deskriptive Statistik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 A.2 Indukitve Statistik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570 Tabellen B.1 B.2 B.3 B.4 B.5 B.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 Binomialverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595 Poissonverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600 Standardnormalverteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604 χ2 –Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605 t–Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606 F –Verteilung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607 Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611 Sachverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617