Modellvorstellung, Atommodell 1. Ströme • Bei einem Gewitter treten Blitze zwischen Gewitterwolken und Boden auf. • Ein Topf mit heißem Pudding wird in eine Schüssel mit kaltem Wasser gestellt. • Aus einem aufgepumpten Fahrradschlauch wird das Ventil herausgezogen. Was haben diese drei Phänomene miteinander zu tun? Gehe auch auf die jeweilige Ursache dieser Phänomene ein. Quelle: Bildungsstandards im Fach Physik für den Mittleren Schulabschluss, Beschluss vom 16.12.2004 Lösung: Gemeinsam ist den drei Phänomenen ein Ungleichgewicht. Daraus resultieren Ströme, die aufrecht erhalten werden, bis sich das System im Gleichgewicht befindet. Beim Blitz fließen elektrische Ladungen aufgrund eines Ladungsunterschieds (Potenzialunterschieds) zwischen Wolke und Erde. Der Pudding kühlt sich ab und das Kühlwasser erwärmt sich bis zum Temperaturausgleich. Die Luft strömt solange aus dem Fahrradschlauch aus, bis der Druck im Reifen dem äußeren Luftdruck entspricht. 2. Wie viele Elektronen müssen von einer elektrisch neutralen Metallkugel abfließen, damit sie die Ladung Q = 4,8 · 10−10 C trägt? Lösung: N = Q = 3,0 · 109 e 3. (a) Durch ein Radiogerät fließt in einer Minute die Ladung 27 C. Berechne die Stromstärke! (b) Welche Ladung fließt in einer Stunde durch ein Bügeleisen, wenn die Stromstärke 3,0 A beträgt? (c) In welcher Zeit fließt durch eine Glimmlampe bei der Stromstärke I = 0,20 mA die Ladung 5,0 C? (d) Durch einen Transistor fließt ein Strom der Stärke I = 0,040 µA. Wie viele Elektronen wandern in einer Sekunde durch den Transistor? 27 C ∆Q = = 0,45 A ∆t 60 s (b) ∆Q = I∆t = 3 A · 3600 s = 10800 As ≈ 1,1 · 104 C ∆Q 5 As (c) ∆t = = = 2,5 · 104 s ≈ 6,9 h I 2 · 10−4 A 4 · 10−8 C ∆Q = = 2,5 · 1011 (d) ∆Q = I∆t = 4 · 10−8 A · 1 s = 4 · 10−8 C, n = e 1,6 · 10−19 C Lösung: (a) I = 1 4. Um ein Strommessgerät zu eichen, muss ein Strom von genau 1 A hergestellt werden, d.h. in einer Sekunde müssen genau 6,24 · 1018 Elektronen durch den Leiterquerschnitt fließen. Teilaufgabe (b) zeigt, dass es unmöglich ist, diese riesige Zahl von Elektronen einzeln abzuzählen. Leitet man Strom durch eine Silbernitratlösung (AgNO3 ), dann scheidet sich an der negativen Elektrode (Kathode) Silber ab, und zwar pro Elektron im Stromkreis genau ein Silberatom. Mit der bekannten Masse I + − Silbernitratlösung Silberabscheidung M = 1,79 · 10−25 kg des Silberatoms kann aus der Masse m des abgeschiedenen Silbers die Zahl N der durch den Leiter geflossenen Elektronen berechnet werden. (a) Wieviel Silber wird von einem Strom der Stärke 1,00 A in einer Sekunde abgeschieden? (b) Ein elektronisches Zählgerät ist in der Lage, pro Sekunde eine Milliarde Elektronen zu zählen. Wie viele Jahre braucht dieses Gerät, um alle Elektronen der Ladung Q = 1 C zu zählen? Lösung: (a) m = 6,24 · 1018 · 1,79 · 10−25 kg = 1,12 · 10−6 kg = 1,12 mg 6,24 · 1018 6,24 · 109 a 9 ≈ 198 a (b) ∆t = = 6,24 · 10 s = 3600 · 24 · 365,25 109 1s 5. Es ist eine experimentell abgesicherte Tatsache, dass sich ein Verzweigungspunkt P (Knoten) einer elektrischen Schaltung nicht auflädt, d.h. die pro Sekunde in den Knoten hineinfließende Ladung muss gleich der pro Sekunde vom Knoten abfließenden Ladung sein. Da aber Ladung ” pro Zeit“ nichts anderes als die Stromstärke ist, gilt folgende Regel: Knoten I1 I5 I2 P I4 I3 I2 + I3 + I4 = I1 + I5 Die Summe der in einen Knoten P hineinfließenden Ströme ist gleich der Summe der von P abfließenden Ströme. (1. Kirchhoff’sche Regel) Berechne alle in den folgenden Zeichnungen angegebenen Stromstärken! (a) 238 µA 0,050 A 0,0398 A (b) (c) P + I4 48 µA 1 µA I1 =? 0,0194 A 2,7 mA I5 I3 0,3 A 3,14 mA P Q S I2 1,8 A R + 2 1,2 A − I1 I3 200 µA Q I2 = 180 · I1 I1 − I4 I2 Lösung: (a) Zum Knoten: Vom Knoten weg: Ihinein = (0,238 + 39,8 + 2,7) mA = 42,738 mA Iheraus = (50 + 0,048 + 3,14 + 19,4) mA = 72,588 mA I1 fließt zum Knoten: I1 = (72,588 − 42,738) mA = 29,85 mA Der größte Fehler der gegebenen Ströme ist 0,5 mA (bei 0,050 A), daher Runden auf ganze mA: I1 ≈ 30 mA. (b) I1 = 1,8 A, I2 = 1,8 A − 0,3 A = 1,5 A, I4 = 1,5 A − 1,2 A = 0,3 A (nach oben) I3 = 0,3 A + 0,3 A = 0,6 A (c) I1 = 201 µA, I2 = 180I1 = 36,18 mA, I4 = I5 = I1 + I2 = 36,381 mA I3 = I5 − 0,001 mA = 36,38 mA 3