Formel-Übersicht Dozent: Dr. Stefan Kooths/Nicole Wägner Fach: Mikroökonomie Wintersemester 2013/2014 Stand: Dezember 2013 Nicht zur Nutzung bei der Klausur zugelassen. I. Operatoren und Funktionen Delta: Beschreibt eine endliche (="große") Veränderung. Beispiel x = 5, d.h. die Variable x nimmt um fünf Einheiten zu. d, d, del: Beide Operatoren beschreiben infinitesimal kleine (= "ganz kleine") Veränderungen. Anwendung: dU/dx: totale Ableitung der Funktion U nach x. U/ x: partielle Ableitung der Funktion U nach x (s. auch Grenznutzen). Dies ist eine implizite Schreibweise für eine Funktion. Sie besagt hier nur, dass P von Q abhängt (z.B. der Marktpreis P hängt von der angebotenen Menge Q ab). ̅) In dieser impliziten Schreibweise hängt die Funktion U von zwei Faktoren X und Y ab, wobei X variiert und ̅ konstant gehalten wird. Diese Form ermöglicht die zweidimensionale graphische Darstellung als partielle Funktion (z.B. die partielle Nutzenfunktion U in Abhängigkeit von Gut X). II. Haushaltstheorie GN1 Der Grenznutzen U Zunahme Nutzen von Gut 1 beschreibt die Zunahme des Nutzens U(x1, x1 Zunahme Konsum Gut 1 x2), wenn eine Einheit des Gutes 1 mehr konsumiert wird. Mathematisch entspricht er partiellen Ableitung der Nutzenfunktion U(x1, x2) nach x1. In einem Diagramm mit Gut 2 an der Ordinate (vertikale x2 Änderung Konsum Gut 2 Achse) und Gut 1 an der Abszisse (horizontale Achse), x1 Änderung Konsum Gut 1 beschreibt diese Formel ein Steigungsdreieck. Für die Steigung einer Indifferenzkurve gilt, dass eine Zunahme von Gut 1 mit einer Abnahme von Gut 2 einhergeht, die Steigung der Indifferenzkurve also negativ ist. GRS x2 Änderung Konsum Gut 2 x1 Änderung Konsum Gut 1 U x2 GN1 x1 GRS U x1 GN 2 x2 Die Grenzrate der Substitution entspricht der Steigung der Indifferenzkurve, d.h. sie entspricht dem Tauschverhältnis zweier Güter bei Indifferenz des Haushalts. Die Grenzrate der Substitution entspricht zudem dem umgekehrten Verhältnis der Grenznutzen der beiden Güter. Beispiel: Der Grenznutzen für jeweils ein Glas Fanta (x1) beträgt 10, der Grenznutzen für Cola (x2) beträgt 2, dann beträgt GRS=-5, d.h. ich bin bereit, für ein Seite 1 von 3 Formel-Übersicht Dozent: Dr. Stefan Kooths/Nicole Wägner Fach: Mikroökonomie Wintersemester 2013/2014 Stand: Dezember 2013 zusätzliches Glas Fanta fünf Cola-Gläser abzugeben, ohne dass sich das Nutzenniveau ändert. E p1 x1 p2 x2 Die Budgetrestriktion gibt an, dass das gesamte Einkommen E für die Güter 1 und 2 ausgegeben wird. Die Mengen x1 und x2 multipliziert mit den jeweiligen Preisen p1 und p2 entsprechen dem Einkommen E. Das negative Preisverhältnis p1/p2 entspricht der Steigung der Budgetgeraden in einem Diagramm mit Gut 2 an der Ordinate. GRS GN1 ! p 1 GN 2 p2 GN1 ! GN 2 p1 p2 Im Haushaltsgleichgewicht muss die Grenzrate der Substitution dem negativen Preisverhältnis entsprechen. Graphisch tangieren sich Indifferenzkurve und Budgetgerade. Diese Formel kann zur Interpretation auch umgestellt werden: Im Haushaltsgleichgewicht muss für jedes Gut ("jede Verwendungsrichtung") der Grenznutzen pro Euro (d.h. Grenznutzen dividiert durch den Preis) gleich hoch sein. III. Unternehmenstheorie X f f1 , f 2 , , f n GE1 Die Produktionsfunktion beschreibt den Transformationsprozess von Faktoren in Output . Die Funktion bildet i.d.R. technisch effiziente Prozesse ab. X Zunahme Pr oduktionsoutput Der Grenzertrag des Faktors 1 beschreibt die f1 Zunahme Pr oduktionsfaktor 1 Zunahme des Outputs X, wenn Faktor 1 um eine (marginale) Einheit erhöht wird. GTS f 2 Änderung Pr oduktionsfaktor 2 f1 Änderung Pr oduktionsfaktor 1 X f2 GE1 f GTS 1 X f1 GE2 f2 GTS f 2 ! q1 f1 q2 GE1 ! GE2 q1 q2 Die Grenzrate der technischen Substitution entspricht der Steigung der Isoquante, d.h. die GTS ist das Verhältnis, in dem die Produktionsfaktoren bei konstantem Output gegeneinander substituiert werden können. Zudem entspricht die Grenzrate der technischen Substitution dem negativen Verhältnis der Grenzerträge beider Produktionsfaktoren. Die Minimalkostenkombination des Unternehmens wird dadurch gekennzeichnet, dass die Grenzrate der technischen Substitution dem negativen Kostenverhältnis der beiden Produktionsfaktoren entspricht. Graphisch tangieren sich Isoquante und Isokostengerade. Zur Interpretation kann obige Formel auch umgestellt werden: Im optimalen Produktionsplan (Minimalkostenkombination) muss für jeden Faktor der Seite 2 von 3 Formel-Übersicht Dozent: Dr. Stefan Kooths/Nicole Wägner Fach: Mikroökonomie Wintersemester 2013/2014 Stand: Dezember 2013 Grenzertrag pro Euro (d.h. Grenzertrag dividiert durch den Faktorpreis) gleich hoch sein. IV. Marktgleichgewicht Beschreibt allgemein das Marktgleichgewicht mit für die Nachfrageund für die Angebotskurve. Der zugehörige gleichgewichtige Preis wird mit bezeichnet. V. Elastizitäten Wirkung in % Ursache in % Allgemein beschreibt eine Elastizität, die prozentuale Änderung der abhängigen Variablen (Wirkung, im Zähler) in Bezug auf eine einprozentige Änderung der unabhängigen Variablen (Ursache, im Nenner). x ,p x1 x Mengenänderung Gut 1 in % 1 p1 Pr eisänderung Gut 1 in % p1 x ,EK x1 x1 Mengenändererung Gut 1 in % EK Einkommensänderung in % EK x ,p xa x Mengenänderung angebotene s Gut in % a pa Pr eisänderung angebotene s Gut in % pa 1 1 1 a 1 Die direkte Preiselastizität der Nachfrage gibt an, wie die Nachfrage nach Gut 1 in Prozent bei einer einprozentigen Erhöhung des Preises reagiert. Analog misst die Kreuzpreiselastizität die prozentuale Nachfrageänderung des Gutes 2 bei einer einprozentigen Preiserhöhung von Gut 1. Die Einkommenselastizität der Nachfrage gibt an, wie die Nachfrage nach Gut 1 in Prozent bei einer einprozentigen Änderung des Einkommens reagiert. Seite 3 von 3 Die Preiselastizität des Angebots gibt an, um wie viel Prozent sich das Angebot des Gutes ändert, wenn der Preis des angebotenen Gutes um 1 Prozent verändert wird.