gcb12015-sup-0001-TableS1-S4

Werbung
Table S1. Results cyanobacterial literature review documenting the association between
the most important driver of cyanobacterial biomass/dominance and lake mixis. Studies
were identified from ISI web of science using the keywords “stability”, “cyanobacteria”,
“temperature”, “phosphorus”, “nutrients” “eutrophication” and/or “mixing”, and
subsequent cross referencing. Only studies comparing both the effects of nutrient
concentrations and temperature (either direct or indirect) for polymictic, weakly stratified
and/or dimictic lakes were kept. “§” indicates conclusion drawn qualitatively from study
author(s). “‡” indicates qualitative conclusions summarized in Steinberg and Hartmann
(1988). For all other studies, quantitative analyses were provided (no symbol).
Author
Findenegg
Year
1965
Mixis
Dimictic
Strongest predictor
Lake name
Alpine lakes
Region
Austria
Overbeck
1968
Dimictic
Water column stability‡
Plusse
Germany
Zimmermann
1969
Dimictic
Water column stability‡
Mauensee
Switzerland
Edmondson
1970
Dimictic
Water column stability‡
Washington
USA
stability‡
Alpine lakes
Austria
Edeberg
Germany
Findenegg
1973
Dimictic
Meffert
1975
Dimictic
Water column
stability‡
Water column
Stability, CO2 and light
§
intensity
Steinberg
1980
Dimictic
Water column stability‡
Ammersee
Germany
Steinberg &
Bucksteeg
Faafeng & Nielssen
1980
Dimictic
Water column stability‡
Fischkaltersee
Germany
1981
Dimictic
Water column stability‡
GjersjØn
Estonia
Steinberg, Wöhlecke
& Hämmerle
Konopka
1981
Dimictic
Water column stability‡
Walchensee
Germany
1982
Dimictic
Water column stability‡
Crooked
USA
Hartmann
1985
Dimictic
Water column stability‡
Germany
Sommers
Dokulil & Skolaut
1985
1986
Dimictic
Dimictic
Water column stability
stability‡
Schliersee;
Wesslinger
Constance
Mondsee
McQueen & Lean
Bürgi et al.
1987
1988
Dimictic
Dimictic
stability‡
St-George
Lucerne
Canada
Switzerland
Soranno
1996
Dimictic
Mendota
USA
Salmaso
2003
Dimictic
Italy
Salmaso
2005
Dimictic
Lugano;
Iseo
Garda
Becker et al.
2010
Dimictic
Sau Reservoir
Spain
Zhang & Prepas
1996
1997
Berger
1975
Polymictic
P and C loads§
Poltz & Job
1981
Polymictic
Light availability‡
Hamm & Kucklentz
1986
Polymictic
TN: TP ratio‡
Jenkins
Lofty
KleinerGlubigsee;
Melangsee;
Petersdorfer See
Drontermeer;
Veluwemeer;
Eemmeer;
Gooimeer
Zwischenahner
Meer
Rothauer
Canada
Rücker et al.
Weakly
stratified
Weakly
stratified
Kusel-Fetzmann &
Spatzierer
Rücker et al.
1987
Polymictic
Light availability‡
Neusiedler
Austria
1997
Polymictic
Nutrient limitation§
Germany
Zhang & Prepas
1996
Polymictic
TP
Burger et al.
Wagner & Adrian
2008
2009
Polymictic
Polymictic
Internal P loading
TP
Lebbiner See;
Langer See;
Wolziger See
Baptiste;
Crooked
Rotorua
Müggelsee
Water column
Temperature
Water column
Weather and physical
variables
Winter climate and
spring mixing
Winter climate and
spring mixing
Temperature and water
column stability
Temperature
Light limitation§
Germany
Austria
Italy
Germany
Netherlands
Germany
Germany
Canada
New Zealand
Germany
References:
Becker V, Caputo L, Ordóñez J, Marcé R, Armengol J, Crossetti LO, Huszar VLM
(2010) Driving factors of the phytoplankton functional groups in a deep
Mediterranean reservoir. Water Research, 44, 3345-3354.
Berger C (1975) Occurrence of Oscillatoria agardhii Gom. in some shallow eutrophic
lakes. Verhandlungen der Internationalen Vereinigung für Theoretisch und
Angewandte Limnologie, 19, 2689-2697.
Burger DF, Hamilton DP, Pilditch CA (2008) Modelling the relative importance of
internal and external nutrient loads on water column nutrient concentrations and
phytoplankton biomass in a shallow polymictic lake. Ecological Modelling, 211,
411-423.
Bürgi HR, Ambühl H, Bührer H, Szabó E (1988) Wie reagiert das Seenplankton auf die
Phosphor-Entlastung. Mitteilungen der Eidgenosischen Anstalt für
Wasserversorgung, Abnwassereinigung und Gewässerschutz, 24, 2-10.
Dokulil M, Skolaut C (1986) Succession of phytoplankton in a deep stratifying lake:
Mondsee, Austria. Hydrobiologia, 138, 9-24.
Edmondson WT (1970) Phosphorus, nitrogen and algae in Lake Washington after
diversion of sewage. Science, 169, 190-192.
Faafeng BA, Nilssen JP (1981) A twenty-year study of eutrophication in a deep,
softwater lake. Verhandlungen der Internationalen Vereinigung für Theo
retische und Angewandte Limnologie, 21, 412-424.
Findenegg I (1965) Limnologische Unterschiede zwischen den österreichischen und
ostschweizerischen Alpenseen und ihre Auswirkung auf das Phytoplankton.
Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich, 110, 289-300.
Findenegg I (1973) Vorkommen und biologisches Verhalten der Blaualge Oscillatoria
rubescens DC in den österreichischen Alpenseen. Carinthia II, 163, 317-330.
Hamm A, Kueklentz V (1986) Abwasser-Nachreinigung und Nährstoffelimination durch
einen bewachsenen Bodenfilter-Auswirkungen auf die Trophielage eines
Kleinsees (Rothauer See/Bayerischer Wald). Bayerische Landesanstalt für
Wasserforschung, Munich, Report No. 2, 1-102.
Hartmann H (1985) Das Phytoplankton dreier oberbayerischer Kleinseen unter dem
Einfluss verschiedener Therapiemassnahmen mit Berücksichtigung physikalischchemischer Parameter. Diploma Thesis, Ludwig-Maximilians-University,
Munich.
Konopka A (1982) Buoyancy regulation and vertical migration by Oscillatoria rubescens
in Crooked Lake, Indiana. British Phycological Journal, 17, 427-442.
Kusel-Fetzman E, Spatzierer G (1987) Einflussfaktoren für das Blaualgenwachstum im
Neusiedler See-Ergebnisse der Biotests 1985/1986. Wissenschaftliche Arbeiten
aus dem Burgenland, Sonderband, 77, 261-300.
McOueen DJ, Lean DRS (1987) Influence of water temperature and nitrogen to
phosphorus ratios on the dominance of blue-green algae in Lake St George,
Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 44, 598-604.
Meffert ME (1975) Analysis of the population dynamics of Oscillatoria redekei Van
Goor in Lake Edeberg. Verhandlungen der Internationalen Vereinigung für
Theoretische und Angewandte Limnologie, 19, 2682-2688.
Overbeck J (1968) Prinzipielles zum Vorkommen der Bakterien im See. Mitteilungen der
Internationalen Vereinigung für Theoretische und Angewandte Limnotogie, 14,
134-144.
Poltz J, Job E (1981) Limnologische Untersuchungen am Zwischenahner Meer und
seinen Zuflüssen. Mitteilungen des Niedersächsischen Wasseruntersuchung
samt, Hildesheim, 6, 156p.
Rücker J, Wiedner C, Zippel P (1997) Factors controlling the dominance of Planktothrix
agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia,
342/343, 107–115.
Salmaso N (2003) Life strategies, dominance patterns, and mechanisms promoting
species coexistence in phytoplankton communities along complex environm
ental gradients. Hydrobiologia, 502, 13–36.
Salmaso N (2005) Effects of climatic fluctuations and vertical mixing on the interannual
trophic variability of Lake Garda, Italy. Limnology and Oceanography, 50, 553565.
Sommers U (1985) Seasonal Succession of Phytoplankton in Lake Constance.
BioScience, 35, 351-357.
Soranno PA, Hubler SL, Carpenter SR, Lathrop RC (1996) Phosphorus loads to
surface waters: A simple model to account for spatial pattern of land use.
Ecological Applications, 6, 865-878.
Steinberg C (1980) Ausmass und Auswirkungen von Nährstoffanreicherungen auf das
Phytoplankton eines subalpinen Sees. Gewässer und Abwässer, 66/67, 175-187.
Steinberg C, Bucksteeg K (1980) Versuch der therapie eines polytrophen Kleinsees mit
Aluminiumchlorid. Vom Wasser, 55, 47-61.
Steinberg C, Wöhlecke C, Hämmerle E (1981) Die Belastung des Walchensees und ihre
Auswirkung auf den Seezustand. Vom Wasser, 57, 37-57.
Steinberg C, Hartmann HM (1988) Planktonic bloom-forming Cyanobacteria and the
eutrophication of lakes and rivers. Freshwater Biology, 20, 279-287.
Wagner C, Adrian R (2009) Cyanobacteria dominance: Quantifying the effects of
climate change. Limnology and Oceanography, 54, 2460–2468.
Zhang Y, Prepas EE (1996) Regulation of the dominance of planktonic diatoms and
cyanobacteria in four eutrophic hardwater lakes by nutrients, water column
stability, and temperature. Canadian Journal of Fisheries and Aquatic Sciences,
53, 621–633.
Zimmermann U (1969) Ökologische und physiologische Untersuchungen an der
planktischen Blaualge Oscillatoria rubescens DC unter besonderer
Berücksichtigung von Licht und Temperatur. Schweizerische Zeitschrift für
Hydrologie, 31, 1-59.
Table S2. Relationship between seasonality (day of the year; DOY) and our focal set of
environmental variables (see Table 5 for basin-specific covariate transformations), where,
tdf = total degrees of freedom, Dev Exp = Deviance explained, n = sample size, and BIC
= Schwarz’s Bayesian Criterion. To evaluate nonlinearity, we applied AMs where the
degree of nonlinearity is indicated by the effective degrees of freedom (edf). An edf of 1
represents a linear model and an edf > 1 represents a nonlinear model. Relationships that
were significant (p<0.05) are highlighted in bold font. For significant relationships, the
deviance of models with and without smoothers were compared using the Chi-square test
to determine whether nonlinear models provided the most parsimonious fit.
Lake basin
CB ~ s(DOY)
(mixing regime)
Baptiste South
R2-adj = 0.59
(dimictic)
p < 0.0001
edf = 3.1
tdf = 4.1
Dev exp = 7%
n = 31
BIC = 148
Ethel
R2-adj = 0.29
(dimictic)
p = 0.0001
edf = 2.6
tdf = 3.6
Dev exp = 32%
n = 60
BIC = 245
Baptiste North
R2 -adj = 0.68
(polymictic)
p < 0.0001
edf = 3.9
tdf = 4.9
Dev exp = 72%
n = 31
BIC = 148
Nakamun
R2-adj = 0.32
(polymictic)
p = 0.002
edf = 2.0
tdf = 3.0
Dev exp = 36%
n = 34
BIC = 171
Wabamun
R2-adj = 0.46
(polymictic)
p < 0.0001
edf = 2.9
tdf = 3.9
Dev exp = 47%
n = 100
BIC = 381
TP ~ s(DOY)
TN ~ s(DOY)
R2-adj = 0.38
p = 0.007
edf = 4.0
tdf = 5.0
Dev exp = 47%
n = 31
BIC = -35
R2-adj = 0.34
p < 0.001
edf = 5.5
tdf = 6.5
Dev exp = 40%
n = 60
BIC =343
R2-adj = 0.54
p < 0.001
edf = 3.8
tdf = 4.8
Dev exp = 60%
n = 31
BIC = -67
R2-adj = 0.26
p = 0.038
edf = 3.4
tdf = 4.4
Dev exp = 33
n = 34
BIC = 320
R2-adj = 0.07
p = 0.061
edf = 2.4
tdf = 3.4
Dev exp = 9%
n = 100
BIC = 695
R2-adj = 0.05
p = 0.209
edf = 1.9
tdf = 2.9
Dev exp = 15%
n = 31
BIC = -40
R2-adj = 0.26
p < 0.001
edf = 2.7
tdf = 3.7
Dev exp = 30%
n = 60
BIC = 672
R2-adj = 0.45
p = 0.001
edf = 3.4
tdf = 4.4
Dev exp = 50%
n = 31
BIC = 436
R2-adj = 0.23
p = 0.037
edf = 3.0
tdf = 4.0
Dev exp = 30%
n = 34
BIC = -52
R2-adj = 0.27
p < 0.0001
edf = 5.9
tdf = 6.9
Dev exp = 31%
n = 100
BIC = 1272
Temperature ~
s(DOY)
R2-adj = 0.92
p < 0.0001
edf = 5.0
tdf = 6.0
Dev exp = 94%
n = 31
BIC = -126
R2-adj = 0.85
p < 0.0001
edf = 3.8
tdf = 4.8
Dev exp = 86%
n = 60
BIC = 22
R2-adj = 0.91
p < 0.0001
edf = 4.3
tdf = 5.3
Dev exp = 92%
n = 31
BIC = 126
R2-adj = 0.89
p < 0.0001
edf = 3.8
tdf = 4.8
Dev exp = 90%
n = 34
BIC = 12
R2-adj = 0.86
p < 0.0001
edf = 4.3
tdf = 5.3
Dev exp = 87%
n = 100
BIC = 407
SSI ~ s(DOY)
R2-adj = 0.94
p < 0.0001
edf = 4.3
tdf = 5.3
Dev exp = 95%
n = 31
BIC = 209
R2-adj = 0.83
p < 0.0001
edf = 3.5
tdf = 4.5
Dev exp = 84%
n = 60
BIC = 448
R2-adj = 0.83
p < 0.0001
edf = 4.7
tdf = 5.7
Dev exp = 85%
n = 31
BIC = 219
R2-adj = 0.35
p = 0.003
edf = 2.7
tdf = 3.7
Dev exp = 41%
n = 34
BIC = 217
R2-adj = 0.31
p < 0.0001
edf = 4.7
tdf = 5.7
Dev exp = 35%
n = 100
BIC = 288
Table S3. Autocorrelation function (acf) for our focal set of variables. The acf provide
the estimates of the temporal autocorrelation by lagged time steps. Only lags with
autocorrelation coefficients greater than or equal to r = 0.35 are presented.
Lake
Baptiste South
(dimictic)
Ethel
(dimictic)
Baptiste North
(polymictic)
acf(CB)
lag-1: r = 0.38
lag-3: r = -0.39
lag-1: r = 0.52
—
Nakamun
(polymictic)
—
Wabamun
(polymictic)
—
acf(TP)
acf(TN)
—
—
lag-2: r = -0.48
lag-2: r = -0.50
—
—
lag-3: r = -0.53
lag-4: r = -0.36
lag-6: r = 0.41
lag-7: r = 0.37
lag-3: r = -0.48
lag-6: r = 0.37
lag-7: r = 0.36
—
—
lag-2: r = -0.49
lag-2: r = -0.58
lag-1: r = 0.62
—
lag-1: r = 0.6
—
acf(Temperature)
lag-1: r = 0.39
lag-3: r = -0.66
lag-4: r = -0.57
lag-6: r = 0.40
lag-7: r = 0.65
lag-10: r = -0.47
lag-13: r = 0.37
lag-14: r = 0.43
lag-1: r = 0.35
lag-3: r =-0.39
acf(SSI)
lag-2: r = -0.40
lag-6: r = 0.44
lag-10: r = -0.40
—
Table S4. Linear cyanobacteria models for basin-specific and across-basin datasets. For
the basin-specific models, a random effect for year was evaluated (transformation: see
Table 5). For the across-basin models, random effects for year within study basin and
basin only were evaluated. To be concise, models with only random intercept structures
are not shown.
Regime
Dimictic
Basin
Baptiste S
(LM)
Baptiste S
(LMM)
Ethel
(LM)
Ethel
(LMM)
Polymictic
Baptiste N
(LM)
Baptiste N
(LMM)
Nakamun
(LM)
Nakamun
(LM)
Wabamun
(LM)
Wabamun
(LMM)
CB ~ TP
R2 = 0.0
 = -1.1
p = 0.812
df = 29
BIC = 171
R2 = 0.06
 = -2.0
p = 0.670
-intercept = 4.7
-slope = 0.3
-residual = 3.3
Corr (Intr) = -1
df = 23
BIC = 169
R2 = 0.0
 = -0.03
p = 0.598
df = 58
BIC = 271
R2 = 0.20
 = -0.1
p = 0.335
-intercept = 0.8
-slope = 0.0
-residual = 2.0
Corr (Intr) = 0
df = 49
BIC = 285
R2 = 0.36
 = 0.08
p < 0.001
df = 29
BIC = 163
R2 = 0.53
 = 0.08
p < 0.001
-intercept = 1.3
-slope = 0.0
-residual = 2.7
Corr (Intr) = 0
df = 23
BIC = 178
R2 = 0.25
 = 0.06
p = 0.002
df = 32
BIC = 172
R2 = 0.30
 = 0.06
p = 0.007
-intercept = 1.4
-slope = 0.0
-residual = 2.7
Corr (Intr) = -1
df = 28
BIC = 188
R2 = 0.03
 = 0.06
p = 0.041
df = 98
BIC = 431
R2 = 0.42
 = 0.10
p < 0.001
-intercept = 2.6
-slope = 0.0
-residual = 1.6
Corr (Intr) = -1
df = 79
BIC = 433
CB ~ TN
R2 = 0.40
 = 18.9
p < 0.0001
df = 29
BIC = 155
R2 = 0.57
 = 17.5
p = 0.009
-intercept = 32.7
-slope = 010.4
-residual = 2.3
Corr (Intr) = -1
df = 23
BIC = 157
R2 = 0.0
 = 0.0
p = 0.933
df = 58
BIC = 271
R2 = 0.18
 = 0.0
p = 0.715
-intercept = 1.2
-slope = 0.0
-residual = 2.0
Corr (Intr) = -1
df = 49
BIC = 289
R2 = 0.72
 = 32.6
p < 0.0001
df = 29
BIC = 139
R2 = 0.80
 = 33.4
p < 0.0001
-intercept = 12.1
-slope = 3.5
-residual = 1.8
Corr (Intr) = -1
df = 23
BIC = 143
R2 = 0.40
 = 19.0
p < 0.0001
df = 32
BIC = 164
R2 = 0.42
 = 18.9
p < 0.0001
-intercept = 3.9
-slope = 1.2
-residual = 2.4
Corr (Intr) = -1
df = 28
BIC = 170
R2 = 0.13
 = 0.005
p = 0.0001
df = 98
BIC = 421
R2 = 0.49
 = 0.005
p < 0.001
-intercept = 2.6
-slope = 0.0
-residual = 1.6
Corr (Intr) = -1
df = 79
BIC = 435
CB ~ Temperature
R2 = 0.27
 = 20.9
p = 0.002
df = 29
BIC = 161
R2 = 0.48
 = 21.4
p = 0.004
-intercept = 12.9
-slope = 9.9
-residual = 2.6
Corr (Intr) = -1
df = 23
BIC = 163
R2 = 0.0
 = -0.11
p = 0.801
df = 58
BIC = 271
R2 = 0.17
 = -0.04
p = 0.925
-intercept = 1.7
-slope = 0.25
-residual = 2.0
Corr (Intr) = -1
df = 49
BIC = 282
R2 = 0.21
 = 0.36
p = 0.009
df = 29
BIC = 171
R2 = 0.38
 = 0.37
p = 0.006
-intercept = 1.3
-slope = 3.9
-residual = 3.1
Corr (Intr) = 0
df = 23
BIC = 181
R2 = 0.10
 = 1.6
p = 0.038
df = 32
BIC = 178
-R2 = 0.42
 = 1.7
p = 0.036
-intercept = 2.2
-slope = 1.0
-residual = 2.5
Corr (Intr) = -1
df = 28
BIC = 182
R2 = 0.26
 = 0.23
p < 0.001
df = 98
BIC = 405
R2 = 0.54
 = 0.22
p < 0.0001
-intercept = 1.1
-slope = 0.0
-residual = 1.5
Corr (Intr) = -0.6
df = 79
BIC = 414
CB ~ SSI
R2 = 0.36
 = 0.09
p < 0.001
df = 29
BIC = 157
R2 = 0.60
 = 0.09
p = 0.001
-intercept = 1.2
-slope = 0.0
-residual = 2.3
Corr (Intr) = -1
df = 23
BIC = 169
R2 = 0.0
 = 0.0
p = 0.988
df = 58
BIC = 271
R2 = 0.18
 = 0.0
p = 0.766
-intercept = 1.9
-slope = 0.0
-residual = 2.0
Corr (Intr) = -1
df = 49
BIC = 292
R2 = 0.01
 = 0.05
p = 0.238
df = 29
BIC = 177
R2 = 0.17
 = 0.05
p = 0.217
-intercept = 1.1
-slope = 0.0
-residual = 3.5
Corr (Intr) = 0
df = 23
BIC = 190
R2 = 0.02
 = 0.11
p = 0.198
df = 32
BIC = 181
R2 = 0.31
 = 0.12
p = 0.185
-intercept = 0.57
-slope = 0.1
-residual = 2.7
Corr (Intr) = -1
df = 28
BIC = 191
R2 = 0.0
 = 0.20
p = 0.284
df = 98
BIC = 435
R2 = 0.26
 = 0.09
p = 0.602
-intercept = 0.54
-slope = 0.12
-residual = 1.8
Corr (Intr) = 0.9
df = 79
BIC = 446
Table S4 (continued). Linear cyanobacteria models for basin-specific and across-basin
datasets. For the basin-specific models, a random effect for year was evaluated
(transformation: see Table 5). For the across-basin models, random effects for year within
study basin and basin only were evaluated. To be concise, models with only random
intercept structures are not shown.
Basin
All basins
(LM)
All basins
(LMM random effect:
basin)
All basins
(LMM random effect:
year/basin)
CB0.25 ~ log10(TP)
R2 = 0.20
 = 5.4
p < 0.0001
df = 254
BIC = 1215
R2 = 0.26
 = 5.9
p = 0.008
df = 250
-intercept = 8.4
-slope = 4.4
-residual = 2.4
Corr (Intr) = -1
BIC = 1226
R2 = 0.37
 = 5.7
p = 0.015
df = 206
random - basin:
-intercept = 8.7
-slope = 4.6
Corr (Intr) = -1
random - year/basin:
-intercept = 4.1
-slope = 2.4
-residual = 2.3
Corr (Intr) = -1
BIC = 1237
CB0.25 ~ log10(TN)
R2 = 0.28
 = 9.5
p < 0.0001
df = 254
BIC = 1189
R2 = 0.44
 = 15.7
p = 0.002
df = 250
-intercept = 32.3
-slope = 10.6
-residual = 2.1
Corr (Intr) = -1
BIC = 1165
R2 = 0.55
 = 16.3
p = 0.002
df = 206
random - basin:
-intercept = 32.6
-slope = 10.7
Corr (Intr) = -1
random - year/basin:
-intercept = 8.9
-slope = 3.0
-residual = 2.0
Corr (Intr) = -1
BIC = 1175
CB0.25 ~ sqrt(Temp)
R2 = 0.10
 = 1.4
p < 0.0001
df = 254
BIC = 1244
R2 = 0.31
 = 1.8
p = 0.001
df = 250
-intercept = 2.8
-slope = 1.1
-residual = 2.4
Corr (Intr) = -1
BIC = 1214
R2 = 0.47
 = 1.8
p < 0.001
df = 206
random - basin:
-intercept = 2.7
-slope = 1.0
Corr (Intr) = -1
random - year/basin:
-intercept = 0.7
-slope = 0.4
-residual = 2.2
Corr (Intr) = -1
BIC = 1217
CB0.25 ~ SSI
R2 = 0.0
 = 0.0
p = 0.087
df = 254
BIC = 1268
R2 = 0.23
 = 0.001
p = 0.019
df = 250
-intercept = 0.6
-slope = 0.0
-residual = 2.5
Corr (Intr) = 1
BIC = 1252
R2 = 0.39
 = 0.001
p = 0.0128
df = 206
random - basin:
-intercept = 0.7
-slope = 0.0
Corr (Intr) = 1
random - year/basin:
-intercept = 0.8
-slope = 0.0
-residual = 2.3
Corr (Intr) = 0.3
BIC = 1260
Herunterladen