Wahrscheinlichkeitsrverteilungen Lernunterlagen Zufallsvariablen und ihre Verteilungen Beispiele von Zufallsvariablen Beispiel 1: Augenzahl eines Würfels Beim Werfen eines Würfels kann die Augenzahl die Werte 1, 2, 3, 4, 5, 6 annehmen. Bei einem idealen Würfel sind die Wahrscheinlichkeiten für das Auftreten dieser Werte gleich groß und in der folgenden Tabelle und in neben stehendem Stabdiagramm eingetragen. Augenzahl 1 2 3 4 5 6 Wahrscheinlichkeit 1 6 1 6 1 6 1 6 1 6 1 6 1 2 3 4 5 6 Beispiel 2: Augensumme zweier Würfel • • Die Augensumme 2 tritt in den 36 möglichen 1 Fällen nur 1-mal auf ⇒ p 2 = 36 die Augensumme 3 tritt in den 36 m;glichen 2 Fällen insgesamt 2-mal auf ⇒ p 2 = 36 Augenzahl des 1. Würfels Augenzahl des 2. Würfels Beim Werfen zweier Würfel kann die Augenzahl jedes Würfels die Werte 1, 2, 3, 4, 5, 6 annehmen. Bildet man die Augensumme ergeben sich die in der Tabelle dargestellten Werte. Die Augensumme nimmt dabei die Werte 2, 3, …, 12 an. Unter der Annahme, dass wir mit zwei idealen Würfeln spielen, d.h. die Augenzahlen 1, 2, 3, 4, 5, 6 sind für jeden Würfel gleich wahrscheinlich, treten die Werte der Augensumme mit unterschiedlichen Wahrscheinlichkeiten auf: 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12 Entsprechend ergeben sich für die weiteren möglichen Versuchsausfälle die in der folgenden Tabelle dargestellten Wahrscheinlichkeiten: Augensumme 2 3 4 5 6 7 8 9 10 11 12 Wahrscheinlichkeitsrverteilungen Lernunterlagen Wahrscheinlichkeit 1 36 2 36 3 36 4 36 5 36 6 36 5 36 4 36 3 36 2 36 1 36 Entsprechend der Wahrscheinlichkeiten ergibt sich für die Augensumme das neben stehende Stabdiagramm 2 3 4 5 6 7 8 9 10 11 12 Beispiel 3: Anzahl von „Kopf“ bei dreimaligem Münzwurf Eine Münze wird dreimal geworfen und es wird gezählt, wie oft dabei das Ereignis „Kopf“ eintritt. Die Kopfanzahl kann damit die Werte 0, 1, 2, 3 annehmen. Zur Bestimmung der Wahrscheinlichkeiten für das Eintreten eines dieser Ereignisse bestimmen wir mit Hilfe eines Baumdiagrammes sämtliche Möglichkeiten von Versuchsausfällen. Es gibt genau 1 Möglichkeit, dass „Kopf“ nicht vorkommt. Die Wahrscheinlichkeit für dieses Ereignis ist: 1 1 1 1 p0−mal Kopf = ⋅ ⋅ = 2 2 2 8 Das Ereignis 1-mal Kopf kommt insgesamt 3-mal vor, entsprechend ergibt sich für dessen Wahrscheinlichkeit: p1−mal Kopf = 1 1 1 1 1 1 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = 2 2 2 2 2 2 2 2 2 3 8 Das Ereignis 2-mal Kopf tritt ebenfalls 3-mal auf, d.h. dessen Wahrscheinlichkeit ist: p2−mal Kopf = 1 1 1 1 1 1 1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 2 = 3 8 Das Ereignis 3-mal Kopf triff nur 1-mal auf, damit ist die Wahrscheinlichkeit für sein Eintreten: 1 1 1 1 p3−mal Kopf = ⋅ ⋅ = 2 2 2 8 Mit diesen Ergebnissen lassen sich die Wahrscheinlichkeiten für das Ereignis „Anzahl von Kopf“ in der folgenden Tabelle und dem folgenden Stabdiagramm darstellen: Anzahl Kopf 0 1 2 3 Wahrscheinlichkeitsrverteilungen Lernunterlagen Wahrscheinlichkeit 1 8 3 8 3 8 1 8 0 1 2 3 Beispiel 4: Wurfanzahl bis zum ersten Sechser Ein Würfel wird solange geworfen, bis eine Sechs gewürfelt wird. Die Anzahl der dafür nötigen Würfe wird festgehalten. Sie kann die Werte 1, 2, 3, … annehmen. Zur Bestimmung der Wahrscheinlichkeit für das Auftreten eines dieser Ereignisse zeichnen wir das folgende Baumdiagramm: Die Wahrscheinlichkeit, dass eine Sechs beim ersten Wurf kommt, ist: p6 beim 1. Wurf = 1 = 0,1667 6 Kommt die Sechs beim zweiten Wurf, erhalten wir die Wahrscheinlichkeit: p6 beim 2. Wurf = 5 1 ⋅ = 0,1389 6 6 Die Wahrscheinlichkeit, dass die Sechs beim dritten Wurf kommt, errechnet sich aus: p6 beim 3. Wurf = 5 5 1 ⋅ ⋅ 6 6 6 2 = 5 1 ⋅ 6 6 = 0,1157 Für die Wahrscheinlichkeit, dass die Sechs beim n-ten Wurf auftritt, kann die folgende Beziehung hergeleitet werden: n−1 5 1 p6 beim n−ten.Wurf = ⋅ 6 6 Mit dieser Beziehung lassen sich nun die folgende Tabelle und das folgende Stabdiagramm für die Wahrscheinlichkeiten bilden: Wurfanzahl 1 2 3 ... n Wahrscheinlichkeitsrverteilungen Lernunterlagen Wahrscheinlichkeit 1 = 0,1667 6 5 1 ⋅ = 0,1389 6 6 2 ... 5 1 ⋅ = 0,1157 6 6 n−1 5 6 ⋅ 1 6 0,18 0,16 0,14 0,12 0,10 0,08 0,06 0,04 0,02 0,00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 In jedem der betrachteten Beispiele liegt ein Zufallsexperiment vor, in dem einer Variablen ein bestimmter Wert zugewiesen wird (z.B. dem Wurfergebnis zweier Würfel wird deren Augensumme zugewiesen). Da das Ergebnis eines derartigen Versuches vom Zufall abhängig ist, bezeichnet man die Variable eines derartigen Experimentes als Zufallsvariable. Eine Zufallsvariable ordnet jedem Ausfall eines Zufallsexperimentes eine reelle Zahl zu. Zufallsvariable werden mit Großbuchstaben (z.B. X , Y ) bezeichnet. Nimmt eine Zufallsvariable einen bestimmten Wert, z.B. a an, schreibt man X = a . Mit p X = a bezeichnet man jene Wahrscheinlichkeit, die dem Versuchsausfall a der Zufallsvariable X zugeordnet ist. Der Ausdruck p X a bedeutet entsprechend, die Wahrscheinlichkeit, dass X einen Wert a annimmt. Analog sind die Schreibweisen p X a, p X ≤ a und p X ≥ a zu verstehen. Mit pa X b bezeichnet man die Wahrscheinlichkeit, dass die Variable X einen Wert zwischen a und b annimmt. Analog sind pa ≤ X ≤ b, pa ≤ X b und p a X ≤ b zu verstehen. Die Werte einer Zufallsvariablen müssen nicht unbedingt Zahlen sein. Betrachtet man die „Augenfarbe“ von willkürlich ausgewählten Personen, dann nimmt die Zufallsvariable die Werte blau, grün, grau, etc. an. Man kann jedoch durch eine geeignete Zuordnugsvorschrift, jedem Wert der Zufallsvariablen eine eindeutige Zahl zuordnen. Wahrscheinlichkeitsverteilungen In den oben angeführten Beispielen haben wir für jeden Wert der betrachteten Zufallsvariablen eine Wahrscheinlichkeit bestimmt. Die Bestimmung der Wahrscheinlichkeiten erfolgte dabei über Tabellen, Baumdiagramme bzw. im Falle des Wahrscheinlichkeitsrverteilungen Lernunterlagen letzten Beispiels durch eine Formel. Zuordnungen, die den Werten von Zufallsvariablen bestimmte Wahrscheinlichkeiten zuordnen, werden als Wahrscheinlichkeitsverteilungen bezeichnet: Definition: Sei X eine Zufallsvariable, die die (endlich oder unendlich vielen) Werte a1, a2, a3, annehmen kann. Wird jedem Wert ai eine Wahrscheinlichkeit p X = ai zugeordnet, so wird diese Zuordnung als Wahrscheinlichkeitsverteilung von X bezeichnet. Manche Wahrscheinlichkeitsverteilungen haben auf Grund ihrer charakteristischen Form bestimmte Namen: • Gleichverteilung (Beispiel 1) • Dreiecksverteilung (Beispiel 2) • Binomialverteilung (Beispiel 3) • geometrische Verteilung (Beispiel 4) Zusammenhang zwischen Häufigkeitsverteilungen Wahrscheinlichkeitsverteilungen und Führen wir ein Zufallsexperiment durch, können wir die absoluten Häufigkeiten der Versuchsausfälle registrieren, bzw. aus den absoluten Häufigkeiten die relativen Häufigkeiten bestimmen. Damit erhält man ein (absolute bzw. relative) Häufigkeitsverteilung der Zufallsvariablen X . In der folgenden Abbildung sind die relativen Häufigkeitsverteilungen für die die Augensumme für n = 20, n = 100 bzw. n = 10000 dargestellt. 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 Mit steigendem n nähern sich die relativen Häufigkeitswerte immer mehr den Wahrscheinlichkeiten p X = a an. Dies führt zum: Empirisches Gesetz der großen Zahl: Wird eine Versuchsserie zu je n Versuchen mehrfach durchgeführt und ist n groß, so weichen die einzelnen Häufigkeitsverteilungen nur wenig voneinander ab und schwanke Wahrscheinlichkeitsrverteilungen Lernunterlagen um die entsprechende Wahrscheinlichkeitsverteilung. Mittelwert und empirische Varianz einer Häufigkeitsverteilung Definition: Es seien a1, a2, , ak die möglichen Werte einer Zufallsvariablen X . Bei n -maliger Durchführung des Zufallsexperimentes ergebe sich eine Liste von n Variablenwerten, wobei der Wert ai mit der absoluten Häufigkeit H n a i bzw. mit der relativen Häufigkeit hn ai 1 ≤ i ≤ k auftritt. Man setzt: Mittelwert x der Liste: a ⋅ H n a 1 a2 ⋅ H n a2 a k ⋅ H n ak x= 1 = a1 ⋅ hn a1 a2 ⋅h n a2 a k ⋅h n ak n Empirische Varianz s 2 der Liste: 2 2 2 a 1 − x ⋅ H n a1 a2 − x ⋅ H n a 2 ak − x ⋅ H n ak 2 s = n 2 2 2 = a1 − x ⋅hn a1 a 2 − x ⋅ hn a 2 ak − x ⋅h n ak Empirische Standardabweichung s der Liste: Varianz. s = s 2 = s ist die Wurzel aus der empirischen Die oben angegebene Formel zur Berechnung der empirischen Varianz eignet sich gut als Streuungsmaß für die Häufigkeitsverteilung von X , für die praktische Berechnung ist allerdings die folgende Formel besser geeignet: Satz: Tritt jeder mögliche Wert ai einer Zufallsvariablen mit der absoluten Häufigkeit H n a i bzw. mit der relativen Häufigkeit hn ai auf( 1 ≤ i ≤ k ), so gilt: s 2 = = a21 ⋅ H n a1 a22 ⋅ H n a2 a 2k ⋅ H n ak − x2 n 2 2 [ a1 ⋅h n a1 a2 ⋅h n a2 a2k ⋅hn ak ] − x 2 = Wahrscheinlichkeitsrverteilungen Lernunterlagen Erwartungswert und Varianz einer Zufallsvariablen Erwartungswert Das neben stehende Glücksrad ist in 4 Sektoren geteilt. Der relative Anteil eines Sektors an der Gesamtfläche ist in jedem Sektor eingetragen. Die Zahlen am Rande legen die Höhe des Gewinnes für jeden Sektor fest. Wird nun das Glücksrad sehr oft gedreht, stellt sich die Frage, wie hoch der mittlere Gewinn ausfallen wird? Es sei „Gewinn“ die Zufallsvariable, die die Werte 0, 2, 5, 10 annehmen kann. Wird das Glücksrad n-mal gedreht, tritt jeder dieser Werte mit der relativen Häufigkeit hn 0 , hn 2 , hn 5 und hn 10 auf. Der Mittelwert x der Gewinne aller Spiele ist dann: x = 0⋅ hn 0 2 ⋅hn 2 5⋅ hn 5 10 ⋅hn 10 . Wenn n sehr groß ist, nähern sich die Werte der relativen Häufigkeiten den entsprechenden Wahrscheinlichkeiten: hn 0 = 0,4 , hn 2 = 0,3 , h n 5 = 0,2 , hn 10 = 0,1 Im Durchschnitt werden wir bei jeder Drehung des Glücksrades mit einem Gewinn von x = 0⋅0,4 2⋅ 0,3 5⋅0,2 10 ⋅0,1 = 2,6 zu rechnen haben. In einem Zufallsexperiment, dessen Zufallsvariable X die Werte a1, a2, , ak annehmen kann nähert sich große n der Mittelwert x dem Wert: a1 ⋅ p a1 a2 ⋅ p a2 ak ⋅ pa k Definition: Es sei X eine Zufallsvariable mit den Werten a1, a2, , ak denen p p , p Wahrscheinlichkeiten 1, 2, k zugeordnet sind. Dann nennt man = E X = a1 ⋅ p1 a 2 ⋅ p 2 a k ⋅ p k den Erwartungswert von X die Wahrscheinlichkeitsrverteilungen Lernunterlagen Der Erwartungswert einer Zufallsvariablen ist näherungsweise gleich dem Mittelwert einer sehr langen Liste von Variablenwerten. Varianz und Standardabweichung Ähnliches wie für den Mittelwert x einer Häufigkeitsverteilung gilt auch für die empirische Varianz. Führt man ein Zufallsexperiment sehr oft durch, nähern sich die relativen Häufigkeiten den Wahrscheinlichkeiten. Damit nähert sich die empirische Varianz s2 = 2 a1 − x 2 2 ⋅hn a1 a 2 − x ⋅ hn a 2 ak − x ⋅h n ak immer mehr dem Ausdruck 2 2 2 a 1 − ⋅ p1 a 2 − ⋅ p2 a k − ⋅ p k Dieser Ausdruck wird als Varianz von X bezeichnet. Definition: Es sei X eine Zufallsvariable mit den Werten a1, a2, , ak denen p p , p Wahrscheinlichkeiten 1, 2, k zugeordnet sind. Dann nennt man 2 2 die 2 2 = V X = a1 − ⋅ p1 a2 − ⋅ p2 ak − ⋅ pk die Varianz von X Die Zahl = V X heißt Standardabweichung von X . Die Varianz (Standardabweichung) einer Zufallsvariablen ist näherungsweise gleich der empirischen Varianz (empirischen Standardabweichung) einer sehr langen Liste von Variablenwerten. Ähnlich wie für die empirische Varianz gilt auch hie der Satz: Satz: Tritt jeder mögliche Wert ai einer Zufallsvariablen mit der Wahrscheinlichkeit pi auf ( 1 ≤ i ≤ k ), so gilt: 2 = [ a21 ⋅ p 1 a 22 ⋅ p2 a2k ⋅ p k ] − 2 Übung: Zehn Jugendliche nehmen an einem Test teil, bei dem 5 Begriffe zu erraten sind. Die Anzahlen der erratenen Begriffe sind in der folgenden Liste angegeben: 1, 3, 2, 2, 4, 5, 0, 4, 5, 4 1. Welche Werte kann die Zufallsvariable „Anzahl erratener Begriffe“ annehmen? Wahrscheinlichkeitsrverteilungen Lernunterlagen Berechne die absoluten und relativen Häufigkeiten dieser Werte. 2. Berechne den Mittelwert x der Liste auf zwei Arten, einmal mit den absoluten und einmal mit den relativen Häufigkeiten. 3. Berechne die empirische Varianz s 2 der Liste nach der unten stehender Definition auf zwei Arten, einmal mit den absoluten und einmal mit den relativen Häufigkeiten. 4. Berechne die empirische Varianz s 2 der Liste nach dem folgenden Satz und vergleiche mit den Ergebnissen von 3) s 2 = = a21 ⋅ H n a1 a22 ⋅ H n a2 a2k ⋅ H n a k − x2 n 2 2 [ a1 ⋅h n a1 a2 ⋅h n a2 a2k ⋅hn ak 2 ] − x 2 = 5. Berechne die Standardabweichung s der Liste (ad 1: 0, 1, 2, 3, 4, 5 ad 2: x = 3 , ad 3: s 2 = 2,6 , ad 4: s 2 = 2,6 , ad 5: = 2,6 ) Übung: Die SchülerInnen der Klassen 7a und 7b treten zu einem Mathematikwettbewerb an. Es sind sechs etwa gleich schwere Aufgaben zu lösen, wobei nur vollständig gelöste Aufgaben zählen. Die Anzahlen der gelösten Aufgaben sind für die einzelnen SchülerInnen in der folgenden Liste angegeben: 7a: 3, 3, 5, 1, 0, 1, 2, 4, 4, 2, 0, 3, 4, 1, 4, 5, 2, 6, 1, 4, 2, 3, 5, 4, 3 7b: 3, 4, 4, 6, 1, 2, 4, 2, 2, 0, 1, 3, 2, 6, 3, 1, 2, 5, 1, 3, 2, 3, 3 1. Stelle die Verteilung der relativen Häufigkeiten der Anzahl gelöster Aufgaben für jede Klasse durch ein Stabdiagramm dar. 2. Berechne für jede Klasse den Mittelwert, die empirische Varianz und die empirische Standardabweichung. 3. Welche Klasse hat besser abgeschnitten? Wie lassen sich die unterschiedlichen Standardabweichungen deuten? (ad 2: x a = 2,88 , x b = 2,739 s 2a = 2,586 , s 2b = 0,975 a = 1,608 , b = 0,987 , ad 3: in der Klasse 7a haben die Schüler im Schnitt mehr Aufgaben gelöst, allerdings ist die Standardabweichung für die Klasse 7b geringer, d.h. die Anzahl der gelösten Aufgaben weicht weniger stark vom Durchschnitt ab.) Übung: Ein Werkstück wurde mit zwei Waagen jeweils zehnmal gewogen. Dabei ergaben sich die folgenden, leicht schwankenden Messergebnisse (in Milligramm) 1. Waage: 42, 43, 43, 41, 42, 42, 42, 43, 43, 41 2. Waage: 43, 42, 42, 43, 42, 42, 41, 42, 42, 43 Zeige, dass beide Waagen das selbe mittlere Gewicht des Werkstückes liefern. Welche Waage kann man als genauer bezeichnen? Begründe! ( x 1 = x 2 = 42,2 1 = 0,56 , 2 = 0,36 ) Wahrscheinlichkeitsrverteilungen Lernunterlagen Übung: Reißnägel der Marke A und B werden in Schachteln zu je 100 Stück verpackt, doch ergeben sich bei der Serienabfüllung leichte Schwankungen. Bei der Untersuchung von 20 Schachteln jeder Marke ergaben sich die folgenden absoluten Häufigkeiten: Marke A: Schachtelinhalt (Stück) 97 98 99 100 101 102 103 Absolute Häufigkeit 1 2 4 8 3 1 1 Marke B: Schachtelinhalt (Stück) 97 98 99 100 101 102 103 Absolute Häufigkeit 2 2 5 7 3 0 1 1. Berechne die relativen Häufigkeiten. 2. Berechne für beide Marken den Mittelwert, die empirische Varianz und die empirische Standardabweichung des Schachtelinhaltes. 3. Welche Marke soll man eher kaufen, wenn eine Schachtel der Marke A gleich teuer ist wie eine Schachtel der Marke B? Bei welcher Marke muss die Herstellerfirma eher mit einer Reklamation rechnen? Begründe die Antworten. ( x A = 99,85 , x B = 99,55 A = 1,828 , B = 1,948 ) Die Binomialkoeffizienten Betrachten wir ein Glücksrad, das in zwei Sektoren geteilt ist. Das rote Feld bezeichne dabei einen Treffer (T), entsprechend bezeichne das grüne Feld einen Nichttreffer (N). Drehen wir das Glücksrad nun z.B. viermal, erhalten wir vier Versuchsausfälle, die als Quadrupel (z.B. TTNT) angeschrieben werden können. Zur Beantwortung der Frage, wie viele mögliche Quadrupel gebildet werden können, betrachten wir das folgende Baumdiagramm: Wahrscheinlichkeitsrverteilungen Lernunterlagen In diesem Baumdiagramm entspricht jedem Treffer eine nach rechts führende, jedem Nichttreffer eine nach links führende Strecke. Jedem Versuchsausfall entspricht ein Weg von der Spitze bis zu einem Knoten ganz unten. Die Zahlen an den rot eingefärbten Knoten geben die Anzahl der möglichen Wege an, die von der Spitze zu diesem Knoten führen. Zu diesen Zahlen kommt man, indem man alle Wege, die zu einem Endknoten führen abzählt. Wird das Glücksrad allerdings öfter als 4-mal gedreht, wird das Abzählen der möglichen Wege sehr schnell unübersichtlich und mühsam. Es stellt sich die Frage, ob diese Zahlen auf einem anderen Weg bestimmt werden können. Dazu überlegen wir nochmals, wie man zu den Zahlen in der untersten Reihe kommen kann: • zum ersten und zum letzten Knoten der letzten Zeile führt jeweils ein einziger Weg. • Für den zweiten Knoten der letzten Zeile gibt es zwei Möglichkeiten: zum links darüber stehenden Knoten führt genau ein Weg. Durch Anhängen eines T's kommt man zum gewünschten Knoten. Die zweite Möglichkeit führt über den rechts darüber stehenden Knoten. Zu diesem Knoten führen 3 Wege und durch Anhängen eines N's kommen wir wieder zum gewünschten Knoten. Damit gibt es insgesamt 1 3 = 4 mögliche Wege. • Durch analoge Schlüsse stellt man fest, dass zum 3. Knoten der letzten Zeile 3 3 = 6 , zum 4. Knoten 3 1 = 4 Wege und zum letzten Knoten wieder genau ein Weg führen. Diese Überlegungen lassen sich in analoger Weise für jede beliebige Zeile anstellen, d.h. es gibt ein allgemeines Schema, mit dem das Baumdiagramm beliebig weit fortgesetzt werden kann: In jeder Zeile schreibt man am linken und am rechten Rand die Zahl 1. Die übrigen Zahlen ergeben sich aus der Summer der unmittelbar darüber stehenden Knoten. In der folgenden Abbildung wurde das Baumdiagramm bis zur 7-ten Zeile fortgesetzt. Dieses, beliebig weit fortsetzbare Schema, wird als Pascal'sches Dreick bezeichnet. n=1 1 1 n=2 1 n=3 1 n=4 1 n=5 1 n=6 n=7 1 1 3 4 5 6 7 2 3 6 10 15 21 1 4 10 20 35 1 1 5 15 35 1 6 21 1 7 1 Aus dem Pascal'schen Dreieck ist zu erkennen, dass der k-1 - te Knoten in der n-ten Zeile Lernunterlagen Wahrscheinlichkeitsrverteilungen angibt, wie viele n-Tupel es gibt, in denen T k-mal vorkommt. In der dritten Zeile z.B. gibt der erste Knoten an, dass es 1 Tripel gibt, in dem T 0-mal vorkommt. Der zweite Knoten besagt, dass es 3 Tripel gibt, in denen T genau 1-mal vorkommt, der dritte Knote besagt, dass es ebenfalls 3 Tripel gibt, in denen T 2-mal vorkommt. Die vierte Knoten schließlich besagt, dass es genau 1 Tripel gibt in dem T 3mal vorkommt. Für die Anzahl der n-Tupel gibt es in der Mathematik ein eigenes Symbol: Definition: Die Anzahl der aus zwei Elementen (z.B. T und N) gebildeten n-Tupel, in denen eines der beiden Elemente (z.B. T) genau k-mal vorkommt, bezeichnet man mit n [sprich: n über k] ( n ≤ 1, 0 ≤ k ≤ n ) k Die Zahlen nk heißen Binomialkoeffizienten. Berechnung der Binomialkoeffizienten Zur Berechnung der Binomialkoeffizienten kann prinzipiell das Pascal'sche Dreieck herangezogen werden, daneben gibt es aber auch die folgende Formel: n − k 1 n! = nk = n⋅ n −k ⋅1k⋅−n1−⋅2k⋅⋅ − 2 ⋅ 1 k !⋅ n − k ! Dabei ist n ! = 1⋅ 2⋅3 ⋅⋅ n Übung: Berechne 126 , 1711 und 195 . (924, 12376, 11628) Übung: Wir betrachten sinnlose „Wörter“ aus 10 Buchstaben, wobei nur die Buchstaben A und B verwendet werden, zum Beispiel AAABBABABB. Wie viele solche „Wörter“ kann man bilden, wenn der Buchstaben A a. nie b. genau zweimal c. genau fünfmal d. genau siebenmal e. genau zehnmal vorkommen soll? (1, 45, 252, 120, 1) Wahrscheinlichkeitsrverteilungen Lernunterlagen Übung: Eine Münze wird zweimal geworfen. Bei jedem Wurf kann Kopf (K) oder Zahl (Z) kommen. a. Zeichne ein Diagramm b. Schreib alle Versuchsausfälle als Paare mit Hilfe der Elemente K und Z an (also KK, KZ, …). In wie vielen Versuchsausfällen kommt k genau 0-mal, 1-mal bzw. 2mal vor? Wie kann man diese Anzahlen auch mit Hilfe der Binomialkoeffizienten berechnen? (ad b: in 1 Versuchsausfällen kommt K genau 0-mal vor, in 2 Versuchsausfällen kommt K genau 1-mal vor, in 1 Versuchsausfällen kommt K genau 2-mal vor) Eigenschaften der Binomialkoeffizienten Aus dem Pascal'schen Dreieck ist zu erkennen: 1. in jeder Zeile steht am linken und am rechten Rand die Zahl 1 2. Die Zahlen in einer Zeile sind symmetrisch angeordnet. Die erste Zahle ist gleich der letzten, die zweite ist gleich der vorletzten, usw. 3. ab der zweiten Zeile kann jede nicht am linke oder rechten Rand stehende Zahl als Summe der unmittelbar darüber stehenden Zahlen gebildet werden. Mit Hilfe des Symbols nk lassen sich diese Beobachtungen wie folgt formulieren: Satz: 1. Für all n ∈ ℕ ∗ gilt: n0= 1 und nn= 1 2. für all n ∈ ℕ∗ und alle k ∈ ℕ mit 0 ≤ k ≤ n gilt: nk= n −n k 3. für all n ∈ ℕ ∗ mit n ≥ 2 und alle k ∈ ℕ mit 1 ≤ k ≤ n − 1 gilt: n = n− 1 n− 1 k k−1 k Der Binomiallehrsatz Die Bezeichnung Binomialkoeffizienten rührt daher, dass die Zahlen nk als Koeffizienten n in den binomischen Formeln a b vorkommen. Es gilt der folgende Satz: Satz (Binomiallehrsatz): für alle a , b ∈ ℝ und alle n ∈ ℕ ∗ gilt: 0 1 2 n a b n = n ⋅an b 0 n ⋅ an − 1 b 1 n ⋅a n − 2 b2 n ⋅ a0 b n Wahrscheinlichkeitsrverteilungen Lernunterlagen Die Binomialverteilung Wir betrachten wieder ein Glücksrad, das in zwei Sektoren geteilt ist. Das rote Feld bezeichne dabei einen Treffer (T), entsprechend bezeichne das grüne Feld einen Nichttreffer (N). Das Glücksrad werde nmal gedreht. Die absolute Häufigkeit der Anzahl der Treffer T kann dabei die Werte H = 0,1, 2,... , n annehmen. Die Wahrscheinlichkeit für das Eintreten des Ereignisses T sei PT = p , entsprechend ist die Wahrscheinlichkeit für das Eintreten von N p N = 1 − p . Wir fragen uns nun, mit welcher Wahrscheinlichkeit nimmt die Zufallsvariable H die Werte H = 0,1, 2,.... , n an. Zur Beantwortung dieser Frage betrachten wir das folgende Baumdiagramm. Einem Versuchsausfall H des Zufallsexperimentes, in dem das Glücksrad k-mal auf T stehen bleibt, entspricht einem Weg von der Spitze bis zu einem bestimmten Endknoten des Baumes. Auf diesem Weg, der aus n Strecken besteht, gibt es k T-Knoten und entsprechend n − k N-Knoten. Zu jedem der T-Knoten führt eine Strecke, die mit der Wahrscheinlichkeit p eingeschlagen wird. Umgekehrt führt zu jedem N-Knoten eine Strecke, die mit der Wahrscheinlichkeit p N = 1 − p eingeschlagen wird. Für den n−k vollständigen Weg ergibt sich damit die Wahrscheinlichkeit pk ⋅ 1 − p . Da es n insgesamt solcher Wege gibt, erhalten wir für die Wahrscheinlichkeit p H = k : k n−k p H = k = n ⋅ p k ⋅ 1 − p k Wahrscheinlichkeitsrverteilungen Lernunterlagen Es gilt der folgende Satz: Satz: Bei einem Zufallsversuch trete ein Ereignis E (Treffer) mit der Wahrscheinlichkeit p ein. Der Versuch werde n-mal unter gleichen Bedingungen durchgeführt. Ist H die Anzahl der Versuch, bei denen E eintritt, dann gilt: n−k k p H = k = n ⋅ p ⋅ 1 − p (für 0 ≤ k ≤ n ) k Mit der Formel aus obigen Satz kann für jeden Wert k der Zufallsvariable H die zugehörige Wahrscheinlichkeit berechnet werden. Damit ist aber eine Wahrscheinlichkeitsverteilung festgelegt. Diese Wahrscheinlichkeitsverteilung hat einen eigenen Namen: Definition: Es sei H eine Zufallsvariable mit den möglichen Werten 0, 1, 2,..., n. Wird jedem dieser Werte die Wahrscheinlichkeit n−k k p H = k = n ⋅ p ⋅ 1 − p mit 0 ≤ k ≤ n und 0 ≤ p ≤ 1 k zugeordnet, dann bezeichnet man die dadurch festgelegte Wahrscheinlichkeitsverteilung als Binomialverteilung mit den Parametern n und p . Die Zufallsvariable nennt man binomialverteilt mit den Parametern n und p . Beispiel: Ein Münze wird zwölfmal geworfen. Wie groß ist die Wahrscheinlichkeit, dass a. genau viermal b. genau sechsmal c. genau achtmal „Kopf“ kommt? 1 Die Wahrscheinlichkeit, dass „Kopf“ kommt, ist p Kopf = , entsprechend ist die 2 1 Wahrscheinlichkeit, eine „Zahl“ zu werfen p Zahl = 2 ad a) Die Anzahl n = 12 ist die Anzahl der Würfe. k = 4 bedeutet, dass „Kopf“ in den 12 Würfen genau viermal vorkommen soll. Wahrscheinlichkeitsrverteilungen Lernunterlagen 4 pH = 4 = 4 = 12 − 4 1 1 495 ⋅ ⋅ 2 2 1 495 ⋅ 2 12 ⋅ 1 ⋅ 1 2 2 4 = 8 = 12 = = = 0,1208 ad b) Die Anzahl n = 12 ist die Anzahl der Würfe. k = 6 bedeutet, dass „Kopf“ in den 12 Würfen genau sechsmal vorkommen soll. 6 pH = 6 = 6 = 12 − 6 1 1 924 ⋅ ⋅ 2 2 1 924 ⋅ 2 12 ⋅ 1 ⋅ 1 2 2 6 = 6 = 12 = = = 0,2256 ad c) Die Anzahl n = 12 ist die Anzahl der Würfe. k = 8 bedeutet, dass „Kopf“ in den 12 Würfen genau sechsmal vorkommen soll. 8 p H = 8 = 8 = 12 − 8 1 1 495 ⋅ ⋅ 2 2 1 495 ⋅ 2 12 ⋅ 1 ⋅ 1 2 2 8 = 4 = 12 = = = 0,1208 Beispiel: Eine Schülerin hat einen Wortschatz von 70% aller erlernten Vokabeln. Wie groß ist die Wahrscheinlichkeit, dass sie von 10 zufällig gewählten Vokabeln mindestens 8 weiß? Die Wahrscheinlichkeit, ein Vokabel zu wissen ist pV = 70 = 0,7 . 100 Die Anzahl n = 10 ist die Anzahl der abgefragten Vokabeln. Sollen unter den 10 abgefragten Vokabeln mindestens 8 richtig sein, haben wir zu berechnen: p H ≥ 8 = p H = 8 p H = 9 p H = 10 . Wahrscheinlichkeitsrverteilungen Lernunterlagen Zunächst berechnen wir die Wahrscheinlichkeiten p H = 8 , p H = 9, p H = 10 : p H = 8 = 108⋅ 0,7 ⋅ 0,3 p H = 9 = 109⋅ 0,7 ⋅ 0,3 p H = 10 = 8 9 10 − 8 = 45⋅ 0,78 ⋅ 0,32 = 0,23347 10 − 9 = 10 ⋅0,7 9 ⋅0,3 1 = 0,12106 = 1 ⋅0,710 ⋅ 0,30 = 0,02825 1010⋅ 0,7 ⋅ 0,3 10 10 − 10 Insgesamt erhalten wir: p H ≥ 8 = = = p H = 8 p H = 9 p H = 10 = 0,23347 0,12106 0,02825 = 0,38278 Übung: Ein Würfel wird viermal geworfen. Wie groß ist die Wahrscheinlichkeit, dass die Augenzahl 6 a. nie b. genau einmal c. genau zweimal d. genau dreimal e. genau viermal kommt? (0.4823, 0.3858, 0.1157, 0.0154, 0.0008) Übung: Unter 30 Jugendlichen einer Schulklasse sind 2 Blauäugige. Es werden 5 Jugendliche aus dieser Klasse zufällig ausgewählt. Wie groß ist die Wahrscheinlichkeit, dass unter den ausgewählten Jugendlichen a. kein Blauäugiger b. genau 1 Blauäugiger c. genau 2 Blauäugige sind? (0.7082, 0.2529, 0.0361) Übung: Max spielt beim Roulette nur sogenannte „einfache Chancen“ (Ereignisse mit der 18 Wahrscheinlichkeit , z.B. „Rot“ oder „Gerade“). Wie groß ist die Wahrscheinlichkeit, 37 dass Max unter 8 Spielen a. nie b. genau dreimal Wahrscheinlichkeitsrverteilungen Lernunterlagen c. genau sechsmal gewinnt? (0.0048, 0.2302, 0.0979) Übung: Bei einem Automaten gewinnt man in 30% der Spiele. Wie groß ist die Wahrscheinlichkeit, dass man a. bei 10 Spielen, b. bei 20 Spielen genau 8-mal gewinnt? (0.001447, 0.114397) Übung: Bei einer Fließbandproduktion sind ca. 5% der Produkte defekt. Zur Kontrolle werden 10 Produkte zufällig ausgewählt. Wie groß ist die Wahrscheinlichkeit, dass a. 0 Produkte b. genau 2 Produkte c. genau 3 Produkte defekt sind? ( 0.598737, 0.074635, 0.010475) Übung: Bei einer Prüfung sind 10 Fragen mit „ja“ bzw. „nein“ zu beantworten. Ein Schüler beantwortet die Fragen blind, d.h. er wählt die Antwort „ja“ bzw. „nein“ jeweils mit der gleichen Wahrscheinlichkeit 0,5. Wie groß ist die Wahrscheinlichkeit, dass er von 10 gestellten Fragen a. mindestens 5 b. mindestens 7 c. alle 10 richtig beantwortet? ( p H ≥ 5 = 0.62305, p H ≥ 7 = 0.17188, p H = 10 = 0,00098 ) Erwartungswert und Varianz einer binomialverteilten Zufallsvariablen Die Herleitung der Formeln für den Erwartungswert und die Varianz der Binomialverteilung sind schwierig, daher wird der folgende Satz ohne Herleitung angegeben: Satz: Ist H eine binomialverteilte Zufallsvariable mit den Parametern n und p , dann gilt für den Erwartungswert und die Varianz von H : = EH = n⋅ p, 2 = np ⋅ n − p Beispiel: Es wird 20-mal gewürfelt. Es sei H die Anzahl der erhaltenen Sechser. 1. Berechne den Erwartungswert , die Varianz 2 und die Standardabweichung von H. Wahrscheinlichkeitsrverteilungen Lernunterlagen 2. Wie groß ist die Wahrscheinlichkeit, dass H größer als ist? Ist H eine binomialverteilte Zufallsvariable, dann gilt: 2 = = EH = V H = np np⋅ 1 − p ad 1) Die Wahrscheinlichkeit, eine Sechs zu würfeln, ist p = 1 = 0,166667 . 6 Die Anzahl n = 10 ist die Anzahl der Würfe. Für den Erwartungswert und die Varianz erhalten wir dann: = EH = np 2 = V H = np⋅ 1 − p = = V H = 1,39 ad 2) Für die Wahrscheinlichkeit, dass = = 1 6 1 1 10 ⋅ ⋅ 1 − 6 6 1,18 10 ⋅ = 1,67 = 1,39 H ist, haben wir zu berechnen p H = p H 1,667 1,179 = p H 2,846 Die Anzahl der erhaltenen Sechser soll also > 2,846 sein, d.h. wir haben zu berechnen: p H = 3 p H = 4 p H = 10 . Diese Wahrscheinlichkeit lässt sich einfacher über die Gegenwahrscheinlichkeit berechnen: p H 2,846 = 1 − p H ≤2,846 = 1 − p H = 0 − p H = 1 − p H = 2 Wir berechnen zunächst: 0 p H = 0 = 1 p H = 1 = 2 p H = 2 = 10 − 0 101⋅16 ⋅56 10 ⋅ 1 ⋅ 5 2 6 6 10 ⋅ 1 ⋅ 5 6 6 0 10 = = 10⋅ = 1 5 45⋅ ⋅ 6 6 5 6 10 − 1 1 10 − 2 2 Die gesuchte Wahrscheinlichkeit ergibt sich damit aus: 0,161506 = 0,323011 = 0,29071 9 1 5 ⋅ 6 6 = 8 Wahrscheinlichkeitsrverteilungen Lernunterlagen p H 2,846 = = = 1 − p H = 0 − p H = 1 − p H = 2 1 − 0,161506 − 0,323011 − 0,29071 0,224773 = = Übung: Eine Münze wird 6-mal geworfen. H sei die absolute Häufigkeit von „Zahl“. 1. Berechne den Erwartungswert , die Varianz 2 und die Standardabweichung von H. 2. Wie groß ist die Wahrscheinlichkeit, dass H größer als − ist? (ad 1: = 3, = 1.5 , ad 2: p H − = 0,984375 ) Übung: Jemand setzt beim Roulette 20-mal hintereinander auf Rot. Es sei H die Häufigkeit, mit der Rot eintritt. 1. Berechne den Erwartungswert , die Varianz 2 und die Standardabweichung von H. 2. Wie groß ist die Wahrscheinlichkeit, dass − ≤ H ≤ ist? (ad 1: = 9.7297, = 2.2352 , ad 2:) p − ≤ H ≤ = 0.6263 ) Normalverteilung: Bisher haben wir nur diskrete Verteilungen betrachtet, d.h. Zufallsexperimente, deren Ausgänge nur ganz bestimmte (meist ganzzahlige) Werte annehmen können. Variablen wie z.B. die Größe einer Person oder die Wartezeit auf einen Bus können aber jeden beliebigen Wert annehmen. Für derartige Variablen ist es sinnlos nach der Wahrscheinlichkeit für einen bestimmten Wert zu fragen. Die Wahrscheinlichkeit, dass ein Mensch 170,012345678901234....cm groß ist, ist 0. Sinnvoller ist es zu fragen, mit welcher Wahrscheinlichkeit eine Variable in einem bestimmten Intervall liegt, z.B. dass die Größe einer Person zwischen 170 und 175 cm liegt. Die wichtigste stetige Verteilung ist die Normalverteilung. Sie eignet sich als Näherung für viele Variablen, die in der Praxis auftreten. Eine Normalverteilung wird durch ihren Erwartungswert und ihre Standardabweichung festgelegt. Wahrscheinlichkeitsrverteilungen Lernunterlagen Der Graph der Normalverteilung ist die charakteristische Gauß'sche Glockenkurve. Sie liegt symmetrisch zu , hat dort einen Hochpunkt und bei ± Wendepunkte. Die Wahrscheinlichkeit, dass ein Wert in einem bestimmten Intervall [ a ; b ] liegt, entspricht der Fläche unter der Kurve in diesem Intervall. Die Fläche unter der gesamten Kurve entspricht einer Wahrscheinlichkeit von 100% und ist also 1. Faustregel: P − x = 2 ≡ 68 % 3 P − 2 x 2 = 0,95 ≡ 95 % P − 3 x 3 = 0,997 ≡ 99,7 % Das für die Berechnung der Wahrscheinlichkeit Pa x b benötigte Integral kann nur näherungsweise berechnet werden. Zu dessen Bestimmung stehen Tabellen zur Verfügung. In diesen Tabellen sind die Wahrscheinlichkeitswerte für die Normalverteilung mit Erwartungswert = 0 und Standardabweichung = 1 angegeben. Eine Normalverteilung mit Erwartungswert = 0 und Standardabweichung = 1 wird als standardisierte Normalverteilung Z bezeichnet. Wahrscheinlichkeitsrverteilungen Lernunterlagen Mit der Beziehung Z= x− kann jede Normalverteilung auf die standardisierte Normalverteilung transformiert werden. Mit dieser Transformation kann die Wahrscheinlichkeit für p x a wie folgt berechnet werden: P x a = P Z z = z mit z = Der Wert z gibt die Fläche links von z an. Für negative wegen der Glockenkurve: Werte von z gilt Symmetrie der Z −z = −z = 1 − z a− Wahrscheinlichkeitsrverteilungen Lernunterlagen Für die Wahrscheinlichkeit, dass Z z ist (Fläche rechts von z ) erhält man: Z z = 1 − z Für negative z ist Z −z = = = 1 − −z = 1 − [ 1 − z ] = z Die Wahrscheinlichkeit, dass Z zwischen zwei gegebenen Werten liegt (Fläche zwischen z 1 und z 2 ) beträgt: z 1 Z z 2 = z 2 − z 1 Beispiel: Die Größe von 18-jährigen Burschen ist annähernd normalverteilt mit dem Erwartungswert 180 cm und der Standardabweichung 6cm. Wie groß ist die Wahrscheinlichkeit, dass ein 18-jähriger Bursche a. kleiner als 185 cm, b. größer als 185 cm, c. kleiner als 170 cm, d. zwischen 170 und 185 cm groß ist? Aus der Angabe wissen wir: = 180, = 6 ad a) Um P x 185 berechnen zu können, müssen wir x = 185 zu z= x − 185 − 180 = = 0,83 6 transformieren. Aus der Tabelle ergibt sich dann: P x 185 = P Z 0,83 = 0,83 = 0,79673 ≡ 79,673 % ad b) Um P x 185 berechnen zu können, müssen wir x = 185 zu z= x − 185 − 180 = = 0,83 6 Wahrscheinlichkeitsrverteilungen Lernunterlagen transformieren. Aus der Tabelle ergibt sich dann: P x 185 = P Z 0,83 = 1 − 0,83 = 1 − 0,79673 = 0,20327 ≡ 20,3 % ad c) Um P x 170 berechnen zu können, müssen wir x = 170 zu z= x − 170 − 180 = = −1,67 6 transformieren. Aus der Tabelle ergibt sich dann: P x 170 = P Z −1,67 = 1 − 1,67 = 0,04746 ≡ 4,7 % ad d) Um P170 x 185 berechnen zu können, müssen wir x 1 = 170 und x 2 = 185 zu z1 = z2 = x1 − x2 − = = 170 − 180 6 185 − 180 6 = −1,67 = 0,83 transformieren. Aus der Tabelle ergibt sich dann: P170 x 185 = = = = = P −1,67 Z 0,83 0,83 − −1,67 0,83 − 1 − 1,67 0,79673 − 0,04746 = = = = 0,74927 ≡ 74,927 % Umkehraufgaben In der Praxis stellt sich manchmal die Aufgabe, zu einer vorgegebenen Wahrscheinlichkeit den x- bzw. den z-Wert zu finden. Besonders oft wird ein Bereich gesucht, in dem die Werte einer Variablen mit einer gewissen Wahrscheinlichkeit liegen, ein sogenannter Streubereich. Normalerweise wird dabei verlangt, dass der Erwartungswert in der Mitte dieses Bereiches liegt. Beispiel: In welchem um den Erwartungswert symmetrischen Bereich liegt die Größe von 90% aller 18-jährigen Burschen? Wahrscheinlichkeitsrverteilungen Lernunterlagen Sollen 90% aller Werte innerhalb des Bereichs liegen, müssen je 5% darüber und darunter liegen. Wir suchen also −z = 0,05 bzw. z = 0,95 . In der Tabelle finden wir 1,64 = 1,65 = 0,9495 0,9505 Der gesuchte Wert für z liegt also zwischen den Werten 1,64 und 1,65. Wir rechnen mit dem arithmetischen Mittel z = 1,645 . Zur Bestimmung der Intervallgrenzen formen wir die Standardisierungsformel um: Linke Intervallgrenze −z = −z ⋅ = xl − xl − xl = − z ⋅ Rechte Intervallgrenze |⋅ z = | z ⋅ = xr − xr − xr = z⋅ | ⋅ | Als Intervallgrenzen erhalten wir damit: xl xr = = 180 − 1,645⋅ 6 180 1,645⋅ 6 = = 170,13 189,87 Es sind also 90% aller 18-jährigen Burschen ca. 170 – 190 cm groß. Annäherung der Binomialverteilung durch die Normalverteilung Die folgenden Bilder zeigen das Histogramm der Binomialverteilung für p = 1 2 Wahrscheinlichkeitsrverteilungen Lernunterlagen n = 4, p = 1 2 n = 10, p = 1 2 n = 20, p = 1 2 Es ist zu erkennen, dass der treppenförmige Graph der Binomialverteilung immer mehr zu einer Kurve wird, die einer Glockenform ähnlich ist. Mit zunehmendem n nähert sich die Kurve immer mehr der Normalverteilung. Diese hat den selben Erwartungswert und die selbe Standardabweichung. Für große n darf man die Binomialverteilung durch die Normalverteilung mit = E H = n ⋅ p , 2 = np ⋅ n − p annähern. Faustregel: die Annäherung ist für 3 erlaubt Hypothesen testen Zufall oder Gesetzmäßigkeit? Beispiel: Aus früheren Untersuchungen weiß man, dass die Zahncreme „Strahleweiß“ bei 40% der Bevölkerung bekannt ist. Kürzlich hat die Herstellerfirma eine Werbekampagne in Auftrag gegeben. Die Marketingabteilung möchte nun wissen, ob der Bekanntheitsgrad des Produktes gestiegen ist. Dazu wird eine Befragung durchgeführt, bei der von 100 Befragten 45 angeben, die Zahncreme zu kennen. Kann man also sagen, dass die Kampagne erfolgreich war? 45 ist offensichtlich mehr als 40% von 100. Es könnte allerdings auch sein, dass sich der Bekanntheitsgrad der Zahncreme nicht geändert hat und in der Stichprobe zufällig mehr Personen das Produkt kannten, als zu erwarten war. Wir formulieren die Fragestellung etwas anders: Angenommen 40% der Bevölkerung kennen das Produkt. Wie hoch ist Wahrscheinlichkeit, dass von 100 Personen mindestens 45 die Zahncreme kennen. die Bei unserem Problem handelt es sich um eine Binomialverteilung mit n = 100 und p = 0,4 . Für und erhalten wir: Wahrscheinlichkeitsrverteilungen Lernunterlagen = = n⋅ p = n⋅ p ⋅ 1 − p = 100⋅ 0,4 100⋅ 0,4⋅ 0,6 = = 40 4,899 Die Standardabweichung ist > 3, d.h. wir können die Binomialverteilung durch die Normalverteilung annähern: 45 − 40 z= = 1,021 4,899 p x ≥ 45 = 1 − 1,021 = 1 − 0,8461 = 0,154 ≡ 15,4 % Es besteht also eine Wahrscheinlichkeit von 15,4%, dass das Befragungsergebnis zufällig zustande gekommen ist. Diese Wahrscheinlichkeit ist ziemlich hoch, man kann also nicht mit Sicherheit sagen, dass die Werbekampagne erfolgreich war. Zusammenfassung: Beim Testen von Hypothesen gehen wir von der Annahme aus, dass es keinen Effekt bzw. keinen Zusammenhang gibt. Diese Annahme wird als Nullhypothese bezeichnet. Unter Verwendung dieser Annahme berechnen wir nun die Wahrscheinlichkeit, dass das Untersuchungsergebnis zufällig so stark vom Erwartungswert ( ) abweicht. Ist diese Wahrscheinlichkeit genügend klein, können wir schließen, dass das Untersuchungsergebnis nicht durch Zufall zustande gekommen ist, sondern dass es tatsächlich eine Veränderung gegeben hat (Alternativhypothese). Die Nullhypothese wird abgelehnt (verworfen). Was heißt genügend klein? Meist entscheidet man sich für einen Grenzwert von 5%. Liegt die Wahrscheinlichkeit für einen Zufallstreffer darunter, bezeichnet man das Ergebnis als statistisch signifikant. Man kann diesen Zusammenhang auch so formulieren: die Wahrscheinlichkeit, dass man einen Zusammenhang annimmt, obwohl in Wirklichkeit kein Zusammenhang existiert (Irrtumswahrscheinlichkeit) ist kleiner als 5%. Scheint die Irrtumswahrscheinlichkeit von 5% zu hoch zu sein, kann man auch 1% bzw. 0,3% wählen. In letzterem Fall spricht man von einem hochsignifikantem Ergebnis. Beispiel: Der Zahnpastahersteller möchte die Untersuchung zum Bekanntheitsgrad des Produktes „Strahleweiß“ mit 500 Teilnehmern wiederholen. Ab welchem Ergebnis wird die Nullhypothese „der Bekanntheitsgrad ist 40%“ abgelehnt, wenn die Irrtumswahrscheinlichkeit höchstens 5% betragen soll? Zunächst berechnen wir = = und : n⋅ p = n⋅ p ⋅ 1 − p = 500⋅ 0,4 500⋅ 0,4 ⋅0,6 = = 200 120 Wenn die Nullhypothese richtig sein soll, müssen mindestens 95% der Ergebnisse im Intervall [−z ; z ] liegen. Wir müssen also z so bestimmen, dass p −z x z ≥ 0,95 ist. Wahrscheinlichkeitsrverteilungen Lernunterlagen Berechnung von p −z x z : p −z x z = z − −z z − 1 − z 2 z − 1 2 z z ≥ ≥ ≥ ≥ ≥ 0,95 0,95 0,95 | 1 1,95 | ÷ 2 0,975 z ≥ 1,96 Mit der Umkehrung der Standardisierungsformel erhalten wir: xl xr = = 200 − 120 ⋅1,96 200 120 ⋅1,96 = = 178,529 221,471 Die Nullhypothese wird abgelehnt, wenn entweder weniger als 178 oder mehr als 221 Befragte angeben, das Produkt zu kennen. WICHTIG: Angenommen 225 Befragte ( ≡ 45%) kennen das Produkt, dann können wir nicht sagen, mit 95% Wahrscheinlichkeit ist der Bekanntheitsgrad des Produktes gestiegen. Wir können nur sagen: falls der Bekanntheitsgrad des Produktes gleich geblieben ist, ist die Wahrscheinlichkeit für dieses Ergebnis weniger als 5%.