16. Vorlesung EP

Werbung
16. Vorlesung EP
II Wärmelehre
16. Phasenübergänge (Verdampfen, Schmelzen, Sublimieren)
pV-Diagramm
pT-Diagramm
III. Elektrizität und Magnetismus
17. Elektrostatik
Elektrische Ladung q
Elektrisches Feld E
Potential φ
Spannung U
Versuche:
Reibungselektrizität
Alu-Luftballons
E-Feldlinienbilder
Influenz
EP WS 2008/09 Dünnweber/Faessler
Wiederholung: pV- Diagramm
16. Phasenü
Phasenübergä
bergänge
Wird das Volumen isotherm verkleinert, bleibt der Druck bei einem
von T abhängigen Wert ps konstant bis die gesamte Flüssigkeit
kondensiert ist. Rechts sind 2
Isothermen gezeigt.
Maxwell-Gerade
In einem abgeschlossenen Volumen stellt sich über einer Flüssigkeit
ein temperaturabhängiger konstanter Sättigungsdampfdruck ps ein.
Zwischen der Dampfphase und der flüssigen herrscht ein dynamisches
Gleichgewicht (d.h. es findet ein ständiger Austausch statt)
EP WS 2008/09 Dünnweber/Faessler
16. Phasenü
Phasenübergä
bergänge
Bei oben offenem Behälter, z.B. in Luft, ist der Partialdruck
der Flüssigkeit, z.B. Wasser, nicht gut definiert:
Verdunsten
Partialdruck des Dampfes über der Oberfläche wird durch Diffusion
oder Konvektion reduziert.
→ langsame Verdampfung durch die Flüssigkeitsoberfläche
(→ Verdunstungskälte)
Wasserdampfgehalt der Luft durch Verdunstung von Wasser:
relative Luftfeuchtigkeit =
Partialdruck des Wasserdampfes
Sättigungsdampfdruck bei gegebener Temperatur
typisch 40%-70% , bei 100%: Nebel, Tau
Sieden
Ist der Dampfdruck größer als der Außenluftdruck, so bilden sich im
Inneren der Flüssigkeit Gasblasen, d.h. es findet Verdampfung aus
dem Inneren statt.
EP WS 2008/09 Dünnweber/Faessler
pV- und pT -Diagramm
16. Phasenü
Phasenübergä
bergänge
Zustandskurven für reale Gase (nach v.d. Waals-Gleichung
•Die Maxwellgerade bestimmt für jede Isotherme den Sättigungsdampfdruck
•In ein p-T Diagramm übertragen ergibt sich die (Sättigungs-)Dampfdruckkurve, die
eine der Phasengrenzen darstellt (zwischen Tripel-und kritischen Punkt),
nämlich die zwischen gasförmig und flüssig.
Eine Flüssigkeit siedet, wenn der
Dampfdruck den äußeren Druck
überschreitet
EP WS 2008/09 Dünnweber/Faessler
pT -Diagramm
16. Phasenü
Phasenübergä
bergänge
Nun kommt noch eine dritte Phase dazu: fest
pT-Diagramm für Wasser
Sublimationskurve psub(T):
(Koexistenz fest – gasförmig)
Schmelz–(oder Gefrier-)kurve
(Koexistenz flüssig – fest)
Siede-(oder Kondensations-)kurve
(Koexistenz flüssig – gasförmig)
TP: Tripelpunkt (Koexistenz von
fest- flüssig- gasförmig)
KP:
Kritischer Punkt (keine Unterscheidung zwischen flüssig
und gasförmig mehr, oberhalb von KP
EP WS 2008/09 Dünnweber/Faessler
16. Phasenü
Phasenübergä
bergänge
Anomalie des Wassers
•Wassereis schwimmt!
Durch Wasserstoff-Brücken-Bindungen bilden sich bei
Wasser-Eis voluminöse Strukturen, die Dichte von Wasser-Eis liegt unter der
von kaltem Wasser.
•Höchste Dichte bei 4oC
•(Nicht zu kaltes) Eis schmilzt
nach links oben geneigt.
(Wasser hält sich am Grund von Gewässern)
durch äußeren Druck. Die Schmelzkurve ist
EP WS 2008/09 Dünnweber/Faessler
16. Phasenü
Phasenübergä
bergänge
Anomalie des Wassers
WASSER
CO2 und andere Stoffe
EP WS 2008/09 Dünnweber/Faessler
16. Phasenü
Phasenübergä
bergänge
Siedepunktserhöhung und Gefrierpunktserniedrigung
in Lösungen
(1) Dampfdruckkurve des
Lösungmittels (z.B. Wasser)
(2) Dampfdruckkurve der
Lösung (z.B. Salz in Wasser)
Bei gegebenem Druck erhöht sich der Siedepunkt proportional
zur gelösten Stoffmenge pro Masse des Lösungsmittels (n/m) =
„Molalität“ (Einheit mol/kg).
Bei fester Temperatur ist der Dampfdruck der Lösung
erniedrigt (senkrechter Abstand der Kurven in obiger Skizze).
Ähnliches gilt für den Übergang fest-flüssig:
Gefriertemperaturerniedrigung bei festem Druck. Z.B. -3 0Celsius
bei Lösung von 50g Kochsalz in 1 Liter Wasser
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
III. Elektrizitätslehre
17. Elektrostatik
Die elektrische Kraft ist nach der Gravitation die 2. Wechselwirkung in
der Vorlesung, auch historisch (Volta, Coulomb, Ampère,…. – vorher
nur Reibungselektrizität: Elektron = griech. Bernstein). Bisher ignoriert,
weil makroskopische Körper meistens elektrisch neutral. Im atomaren
Mikrokosmos sind aber die elektrischen und magnetischen Kräfte
dominant.
Versuch Reibungselektrizität und Elektrometer
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
Nachweis elektrischer Ladung
Gleiche Ladungen stoßen sich ab, verteilen sich deshalb gleichmäßig auf
leitenden Oberflächen.
Sie wandern also vom Stab auf das Elektrometer, dessen Enden sich ebenfalls
proportional zur Ladungsmenge abstoßen.
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
Elektrische Ladung
•Zwei Arten (+ und -) unterscheidbar durch Kraftwirkung
•Ladung tritt in diskreten Mengen (gequantelt) auf
•Kleinste Ladungsmenge:
Elementarladung e (z.B. des Elektrons)
Ausnahme: Quarks in Hadronen haben ±2/3, ±1/3 mal e
•Die Gesamtladung eines Systems bleibt immer erhalten
q = ± n ⋅e
e = 1 .6 ⋅ 10 −19 C
Einheit Coulomb = Amperesekunde (1 C = 1 A · s)
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
Kräfte zwischen Ladungen
→
Coulomb Gesetz
1 q1 ⋅ q 2
F=
4π ε 0 r 2
Für MatheExperten:
ε0 = 8,854 · 10-12 C2/(N·m2)
Elektrische Feldstärke
r
r F
E=
q2
r
F=
r
1 q1 ⋅ q 2 r
⋅r
4π ε 0 r 2
r
„Dielektrizitätskonstante des Vakuums“
Versuch Alu-Luftballons
(d.h. Kraft pro positive Pr obeladung q 2 )
Für Mathe-Experten:
Kraftfeld der Ladung q1:
1
q
E(r ) =
⋅ 21
4πε 0 r
Richtung wie im Bild,
Für - - oder ++
entgegengestetzt
Richtung radial nach außen
für + , nach innen für -
r r
E( r ) =
r
1
q1 r
⋅ 2 ⋅ r
4πε 0 r
|r|
1 q1 ⋅ q 2
⋅ 2
Auf die Probeladung q2 wirkt also die Kraft
4πε 0
r
EP WS 2008/09 Dünnweber/Faessler
F = E (r ) ⋅ q 2 =
Vergleich
Newtons Gravitations – und Coulomb-Gesetz
Newton
m1 ⋅ m 2
FN = G
2
r
Coulomb
1 q1 ⋅ q 2
FC =
4π ε 0 r 2
Für 2 Elektronen (m1 = m2 = 0.9—10-30kg und q1= q2 = e = 1.6—10-19 C )
ist
FC = 1042 FN,
d.h. fast unvorstellbar stärker.
Gravitation ist immer anziehend, elektrische Kraft kann anziehend
und abstoßend sein.
Elektrische Ladung ist gequantelt, nur Vielfache von e beobachtet.
Gesamtladung erhalten. Gesamtmasse = Gesamtenergie/c2 auch)
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
Elektrische Felder (Feldlinien)
repräsentieren das Kraftfeld einer
Ladungsverteilung auf eine
positive Probeladung - die Liniendichte die Stärke, der Pfeil die Richtung
+
Ladungen sind Quellen
und Senken von elektrischen Feldern.
Gauß‘scher Satz:
gleiche Ladungen ++
2 Ladungen +-
Versuch
E-Feldlinienbilder
(Gries in Öl)
EP WS 2008/09 Dünnweber/Faessler
17. Elektrostatik
Superposition von elektrischen Feldern: Eges = E1 + E2 .. an jedem Ort
(Addition von Vektoren, wie bei Superposition von Geschwindigkeiten)
Feld ist homogen
innerhalb von entgegengesetzt aufgeladenen Platten
(Plattenkondensator)
EP WS 2008/09 Dünnweber/Faessler
Zusatz für Interessierte noch zu
16. Phasenü
Phasenübergä
bergänge
Zustandskurven / Zustandsflächen in drei Dimensionen p,V,T
Nur die beschrifteten
Oberflächen des Gebirges entsprechen möglichen Zuständen.
Phasengrenzen sind
Koexistenzbereiche (z.B.solid-vapour),
Die dritte Zustandsgröße bestimmt
das Mischungsverhältnis
EP WS 2008/09 Dünnweber/Faessler
Herunterladen